Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes
-
* Corresponding authors.
E-mail addresses: wangh@bipt.edu.cn (H. Wang), jxu@nankai.edu.cn (J. Xu).
Citation:
Hao Wang, Meng-Qi Pan, Ya-Fei Wang, Chao Chen, Jian Xu, Yuan-Yuan Gao, Chuan-Song Qi, Wei Li, Xian-He Bu. Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes[J]. Chinese Chemical Letters,
;2024, 35(10): 109581.
doi:
10.1016/j.cclet.2024.109581
B.E.R. Snyder, A.B. Turkiewicz, H. Furukawa, et al., Nature 613 (2023) 287–291.
doi: 10.1038/s41586-022-05409-2
L. Gagliardi, O.M. Yaghi, Chem. Mater. 35 (2023) 5711–5712.
doi: 10.1021/acs.chemmater.3c01706
Y. Zhao, Y.H. Chai, T. Chen, et al., Chin. Chem. Lett. 35 (2024) 109298.
doi: 10.1016/j.cclet.2023.109298
X.B. Mu, Y.Y. Xue, M.C. Hu, et al., Chin. Chem. Lett. 34 (2023) 107296.
doi: 10.1016/j.cclet.2022.03.019
W. Gong, Y. Xie, X. Wang, et al., J. Am. Chem. Soc. 145 (2023) 2679–2689.
doi: 10.1021/jacs.2c13171
S.B. Geng, H. Xu, C.S. Cao, et al., Angew. Chem. Int. Ed. 62 (2023) e202305390.
doi: 10.1002/anie.202305390
Z.M. Ye, X.F. Zhang, D.X. Liu, et al., Sci. China Chem. 65 (2022) 1552–1558.
doi: 10.1007/s11426-022-1304-1
Y. Zhang, S. Chen, A.M. Al-Enizi, et al., Angew. Chem. Int. Ed. 62 (2023) e202213399.
doi: 10.1002/anie.202213399
C.Q. Zhang, L. Yuan, C. Liu, et al., J. Am. Chem. Soc. 145 (2023) 7791–7799.
doi: 10.1021/jacs.2c11446
S.Y. Wang, Z.W. Ai, X.W. Niu, et al., Adv. Mater. 35 (2023) 2302512.
doi: 10.1002/adma.202302512
Q.B. Shen, J.L. Chen, X. Jing, C.Y. Duan, ACS Catal. 13 (2023) 9969–9978.
doi: 10.1021/acscatal.3c02220
S.L. Liu, J.T. Zhou, X. Yuan, et al., Food Chem. 432 (2024) 137272.
doi: 10.1016/j.foodchem.2023.137272
K.X. Ma, J. Li, H.Y. Ma, et al., Chin. Chem. Lett. 34 (2023) 108227.
doi: 10.1016/j.cclet.2023.108227
S. Liu, Y.P. Huo, G.H. Li, et al., Chem. Eng. J. 469 (2023) 144027.
doi: 10.1016/j.cej.2023.144027
a) X. Wang, L. He, J. Sumner, et al., Nat. Commun. 14 (2023) 973.
K.Y. Wang, J.Q. Zhang, Y.C. Hsu, et al., Chem. Rev. 123 (2023) 5347–5420.
doi: 10.1021/acs.chemrev.2c00879
C.B. Zhao, Z. Jiang, Y. Liu, et al., J. Am. Chem. Soc. 144 (2022) 23560–23571.
doi: 10.1021/jacs.2c10687
R. Ou, H. Zhang, C. Zhao, et al., Chem. Mater. 32 (2020) 10621–10627.
doi: 10.1021/acs.chemmater.0c03726
Y. Yang, G. Ren, W. Yang, et al., ACS Appl. Nano Mater. 4 (2021) 7191–7198.
doi: 10.1021/acsanm.1c01146
F. Xiang, H. Zhang, Y. Yang, et al., Angew. Chem. Int. Ed. 62 (2023) e202300638.
doi: 10.1002/anie.202300638
P. Gao, K. Zhang, D. Ren, et al., Adv. Fun. Mater. 33 (2023) 2300105.
doi: 10.1002/adfm.202300105
N. Yu, M. Li, X. Chen, et al., ACS Appl. Energy Mater. 6 (2023) 12048–12051.
X.L. Zhuang, S.T. Zhang, Y.J. Tang, et al., Coord. Chem. Rev. 490 (2023) 215208.
doi: 10.1016/j.ccr.2023.215208
Z. Zheng, H.L. Nguyen, N. Hanikel, et al., Nat. Protoc. 18 (2023) 136–156.
doi: 10.1038/s41596-022-00756-w
Q.S. Cheng, Q. Ma, H.B. Pei, et al., Coord. Chem. Rev. 484 (2023) 215120.
doi: 10.1016/j.ccr.2023.215120
C. Dong, J.J. Yang, L.H. Xie, et al., Nat. Commun. 13 (2022) 4991.
doi: 10.1038/s41467-022-32678-2
K.Y. Wang, Z.T. Yang, J.Q. Zhang, et al., Nat. Protoc. 18 (2023) 604–625.
doi: 10.1038/s41596-022-00759-7
P. Sekar, P. Vasanthakumar, R. Shanmugam, et al., Green Chem. 24 (2022) 9233–9244.
doi: 10.1039/D2GC02939A
T.Y. Luo, S. Park, T.H. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202209034.
doi: 10.1002/anie.202209034
Y.C. Xiao, Y.C. Chen, A.N. Hong, X.H. Bu, P.Y. Feng, Angew. Chem. Int. Ed. 62 (2023) e202300721.
doi: 10.1002/anie.202300721
T. Chen, D. Zhao, Coord. Chem. Rev. 491 (2023) 215259.
doi: 10.1016/j.ccr.2023.215259
M. Kalaj, S.M. Cohen, ACS Cent. Sci. 6 (2020) 1046–1057.
doi: 10.1021/acscentsci.0c00690
S. Mandal, S. Natarajan, P. Mani, A. Pankajakshan, Adv. Fun. Mater. 31 (2021) 2006291.
doi: 10.1002/adfm.202006291
Z. Yin, S. Wan, J. Yang, M. Kurmoo, M.H. Zeng, Coord. Chem. Rev. 378 (2019) 500–512.
doi: 10.1016/j.ccr.2017.11.015
B. Dinakar, A.C. Forse, H.Z.H. Jiang, et al., J. Am. Chem. Soc. 143 (2021) 15258–15270.
doi: 10.1021/jacs.1c06434
E.J. Kim, R.L. Siegelman, H.Z.H. Jiang, et al., Science 369 (2020) 392–396.
doi: 10.1126/science.abb3976
Z. Zhou, Q. Ke, M. Wu, L. Zhang, K. Jiang, ACS Mater. Lett. 5 (2023) 466–472.
doi: 10.1021/acsmaterialslett.2c01097
C.X. Chen, Z.W. Wei, T. Pham, et al., Angew. Chem. Int. Ed. 60 (2021) 9680–9685.
doi: 10.1002/anie.202100114
Q.G. Zhai, X.H. Bu, X. Zhao, D.S. Li, P.Y. Feng, Acc. Chem. Res. 50 (2017) 407–417.
doi: 10.1021/acs.accounts.6b00526
Y. Liang, X. Yang, X. Wang, et al., Nat. Commun. 14 (2023) 5223.
doi: 10.1038/s41467-023-40973-9
D. Wang, S. Li, C. Wu, T. Li, J. Am. Chem. Soc. 144 (2022) 685–689.
doi: 10.1021/jacs.1c11573
J. Liang, V. Gvilava, C. Jansen, et al., Angew. Chem. Int. Ed. 60 (2021) 15365–15370.
doi: 10.1002/anie.202100675
H. Wang, J. Xu, D.S. Zhang, et al., Angew. Chem. Int. Ed. 54 (2015) 5966–5970.
doi: 10.1002/anie.201500468
a) H. Wang, T.L. Hu, R.M. Wen, Q. Wang, X.H. Bu, J. Mater. Chem. B 1 (2013) 3879–3882.
V. Uskokovic, J. Mater. Chem. B 7 (2019) 3982–3992.
doi: 10.1039/C9TB00444K
T. Lu, T.L.M. TenHagen, J. Control. Release 324 (2020) 669–678.
doi: 10.1016/j.jconrel.2020.05.047
N.M. Mahmoodi, M. Oveisi, A. Taghizadeh, M. Taghizadeh, J. Hazard. Mater. 368 (2019) 746–759.
doi: 10.1016/j.jhazmat.2019.01.107
H. Molavi, A. Hakimian, A. Shojaei, M. Raeiszadeh, Appl. Surf. Sci. 445 (2018) 424–436.
doi: 10.1016/j.apsusc.2018.03.189
C.X. Yu, Z.C. Shao, H.W. Hou, Chem. Sci. 8 (2017) 7611–7619.
doi: 10.1039/C7SC03308G
S.Q. Deng, X.J. Mo, S.R. Zheng, et al., Inorg. Chem. 58 (2019) 2899–2909.
doi: 10.1021/acs.inorgchem.9b00104
A. Ihs, K. Uvdal, B. Liedberg, Langmuir 9 (1993) 733–739.
doi: 10.1021/la00027a021
K.Y. Chun, C.J. Lee, J. Phys. Chem. C 112 (2008) 4492–4497.
doi: 10.1021/jp077453b
G.C. Allen, M.T. Curtis, A.J. Hooper, P.M. Tucker, J. Chem. Soc. Dalton Trans. (1973) 1675–1683.
A.E. Baumann, X. Han, M.M. Butala, V.S. Thoi, J. Am. Chem. Soc. 141 (2019) 17891–17899.
doi: 10.1021/jacs.9b09538
R.A. Peralta, M.T. Huxley, J.D. Evans, et al., J. Am. Chem. Soc. 142 (2020) 13533–13543.
doi: 10.1021/jacs.0c05286
Pengfu Gao , Yuan Geng , Wei Gong . Homochiral metal-organic frameworks bearing privileged ligands for heterogeneous asymmetric catalysis. Chinese Journal of Structural Chemistry, 2025, 44(10): 100719-100719. doi: 10.1016/j.cjsc.2025.100719
Jun-Xian Chen , Xian-Xian Xiao , Libo Li , Jinping Li , Rui-Biao Lin , Xiao-Ming Chen . Fine-tuning of Hofmann-type metal-organic frameworks for highly efficient separation of C4 olefins. Chinese Journal of Structural Chemistry, 2025, 44(12): 100744-100744. doi: 10.1016/j.cjsc.2025.100744
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Zhiqi Hu , Lingling Wu , Duo Zhang , Yixue An , Jiao Wang , Binbin Zhao , Robert Chunhua Zhao , Rong Cao , Xue Yang . Ultrathin transparent metal-organic framework-based nanocomposite membranes for antibacterial wound healing. Chinese Journal of Structural Chemistry, 2025, 44(12): 100749-100749. doi: 10.1016/j.cjsc.2025.100749
Mengjin Li , Tian Xia , Mengyu Wang , Yujie Peng , Sihan Zhang , Xueliang Jiang , Huan Yang . Biocarbon-Confined Bimetallic FeCo Metal-Organic Framework Orthogonal Nanosheet Arrays for Industry-level Ethylene Glycol Oxidation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100627-100627. doi: 10.1016/j.cjsc.2025.100627
Xi Feng , Ding-Yi Hu , Zi-Jun Liang , Mu-Yang Zhou , Zhi-Shuo Wang , Wen-Yu Su , Rui-Biao Lin , Dong-Dong Zhou , Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Chao Wei , Zi-Yi Zhao , Jing-Jing Li , Jinli Zhang , Ming Lu , Xiao-Qin Liu , Guoliang Liu , Jiandong Pang , Lin-Bing Sun . Topology guided construction of MOF by linking Zr-MOLs with perylene diimide motifs for photocatalytic oxidation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100625-100625. doi: 10.1016/j.cjsc.2025.100625
Yun Zhou , Geqian Fang , Haiyan Wang , Wenjun Yu , Chun Zhu , Jin-Xia Liang , Jian Lin . Non-covalent interactions between adsorbed •OH species and UiO-66-NH2 for methane hydroxylation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100629-100629. doi: 10.1016/j.cjsc.2025.100629
Qingyun Yang , Yue Ma , Quanyi Ye , Yiqing Liu , Yuhong Luo , Yongbo Wu , Zhiguang Xu , Xiaoming Lin . Prussian blue analogues derived MO/MFe2O4 (M = Ni, Cu, Zn) nanoparticles as a high-performance anode material for enhanced lithium storage. Chinese Journal of Structural Chemistry, 2025, 44(8): 100631-100631. doi: 10.1016/j.cjsc.2025.100631
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Fereshte Hassanzadeh-Afruzi , Mina Azizi , Iman Zare , Ehsan Nazarzadeh Zare , Anwarul Hasan , Siavash Iravani , Pooyan Makvandi , Yi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564
Xinyu Wu , Jianfeng Lu , Zihao Zhu , Suijun Liu , Herui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Changmin Liu , Ying Wang , Yongqi Bao , Yuqing Lin . Metal-organic framework mimetic enzymes: Exploring new horizons in brain chemistry. Chinese Chemical Letters, 2025, 36(9): 110652-. doi: 10.1016/j.cclet.2024.110652