-
[1]
E.M. Driggers, S.P. Hale, J. Lee, N.K. Terrett, Nat. Rev. Drug Discov. 7 (2008) 608–624.
doi: 10.1038/nrd2590
-
[2]
E.A. Crane, K.A. Scheidt, Angew. Chem. Int. Ed. 49 (2010) 8316–8326.
doi: 10.1002/anie.201002809
-
[3]
J. Mallinson, I. Collins, Future Med. Chem. 4 (2012) 1409–1438.
doi: 10.4155/fmc.12.93
-
[4]
D.J. Newman, G.M. Cragg, Bioactive macrocycles from nature, in: J. Levin (Ed. ), Macrocycles in Drug Discovery, Royal Soc. Chem., Cambridge, 2015, pp. 1–36.
-
[5]
E. Marsault, M.L. Peterson, J. Med. Chem. 54 (2011) 1961–2004.
doi: 10.1021/jm1012374
-
[6]
P. Ermert, Chimia 71 (2017) 678–702.
doi: 10.2533/chimia.2017.678
-
[7]
H. Itoh, M. Inoue, Chem. Rev. 119 (2019) 10002–10031.
doi: 10.1021/acs.chemrev.9b00063
-
[8]
C.J. Hamilton, A. Saravanamuthu, C. Poupat, A.H. Fairlamb, I.M. Eggleston, Bioorg. Med. Chem. 14 (2006) 2266–2278.
doi: 10.1016/j.bmc.2005.11.004
-
[9]
N. Lindquist, W. Fenical, G.D. Van Duyne, J. Clardy, J. Am. Chem. Soc. 113 (1991) 2303–2304.
doi: 10.1021/ja00006a060
-
[10]
Q.X. Wu, M.S. Crews, M. Draskovic, et al., Org. Lett. 12 (2010) 4458–4461.
doi: 10.1021/ol101396n
-
[11]
J.C. Gillis, R.N. Brogden, Rifaximin. Drugs 49 (1995) 467–484.
doi: 10.2165/00003495-199549030-00009
-
[12]
R.H. Grubbs, S.J. Miller, G.C. Fu, Acc. Chem. Res. 28 (1995) 446–452.
doi: 10.1021/ar00059a002
-
[13]
G.S.C. Srikanth, S.L. Castle, Tetrahedron 61 (2005) 10377–10441.
doi: 10.1016/j.tet.2005.07.077
-
[14]
A. Gradillas, J. Pérez-Castells, Angew. Chem. Int. Ed. 45 (2006) 6086–6101.
doi: 10.1002/anie.200600641
-
[15]
A.H. Hoveyda, A.R. Zhugralin, Nature 450 (2007) 243–251.
doi: 10.1038/nature06351
-
[16]
A. Parenty, X. Moreau, G. Niel, J.M. Campagne, Chem. Rev. 113 (2013) PR1–PR40.
doi: 10.1021/cr300129n
-
[17]
Y. Li, X. Yin, M. Dai, Nat. Prod. Rep. 34 (2017) 1185–1192.
doi: 10.1039/C7NP00038C
-
[18]
C.A.G.N. Montalbetti, V. Falque, Tetrahedron 61 (2005) 10827–10852.
doi: 10.1016/j.tet.2005.08.031
-
[19]
R. Peng, Y. Xu, Q. Cao, Chin. Chem. Lett. 29 (2018) 1465–1474.
doi: 10.1016/j.cclet.2018.09.001
-
[20]
K.J. Fraunhoffer, P. Narayanasamy, L.E. Sirois, M.C. White, J. Am. Chem. Soc. 128 (2006) 9032–9033.
doi: 10.1021/ja063096r
-
[21]
E.M. Stang, M.C. White, Nat. Chem. 1 (2009) 547–551.
doi: 10.1038/nchem.351
-
[22]
E.M. Stang, M.C. White, Angew. Chem. Int. Ed. 50 (2011) 2094–2097.
doi: 10.1002/anie.201007309
-
[23]
J.P. Krieger, G. Ricci, D. Lesuisse, C. Meyer, J. Cossy, Eur. J. Org. Chem. 22 (2016) 13469–13473.
doi: 10.1002/chem.201602332
-
[24]
H. Kim, S. Chang, Angew. Chem. Int. Ed. 56 (2017) 3344–3348.
doi: 10.1002/anie.201700113
-
[25]
A. Lumbroso, N. Abermil, B. Breit, Chem. Sci. 3 (2012) 789–793.
doi: 10.1039/C2SC00812B
-
[26]
M.P. Doyle, M.N. Protopopova, C.D. Poulter, D.H. Rogers, J. Am. Chem. Soc. 117 (1995) 7281–7282.
doi: 10.1021/ja00132a043
-
[27]
W. Liu, Z. Ren, A.T. Bosse, et al., J. Am. Chem. Soc. 140 (2018) 12247–12255.
doi: 10.1021/jacs.8b07534
-
[28]
B. Jiang, M. Zhao, S.S. Li, Y.H. Xu, T.P. Loh, Angew. Chem. Int. Ed. 57 (2018) 555–559.
doi: 10.1002/anie.201710601
-
[29]
X. Lu, S.J. He, W.M. Cheng, J. Shi, Chin. Chem. Lett. 29 (2018) 1001–1008.
doi: 10.1016/j.cclet.2018.05.011
-
[30]
T. Bi, Y. Xu, X. Xu, et al., Chin. Chem. Lett. 33 (2022) 2015–2020.
doi: 10.1016/j.cclet.2021.10.043
-
[31]
S. Hu, Y. Zhang, X. Xie, et al., Chin. Chem. Lett. 35 (2024) 109408.
doi: 10.1016/j.cclet.2023.109408
-
[32]
W. Zeng, S.R. Chemler, J. Am. Chem. Soc. 129 (2007) 12948–12949.
doi: 10.1021/ja0762240
-
[33]
D.N. Mai, J.P. Wolfe, J. Am. Chem. Soc. 132 (2010) 12157–12159.
doi: 10.1021/ja106989h
-
[34]
B.A. Hopkins, J.P. Wolfe, Angew. Chem. Int. Ed. 51 (2012) 9886–9890.
doi: 10.1002/anie.201205233
-
[35]
T. Piou, T. Rovis, Nature 527 (2015) 86–90.
doi: 10.1038/nature15691
-
[36]
D.R. White, J.T. Hutt, J.P. Wolfe, J. Am. Chem. Soc. 137 (2015) 11246–11249.
doi: 10.1021/jacs.5b07203
-
[37]
V. Bizet, G.M. Borrajo-Calleja, C. Besnard, C. Mazet, ACS Catal. 6 (2016) 7183–7187.
doi: 10.1021/acscatal.6b02238
-
[38]
Z. Liu, Y. Wang, Z. Wang, et al., J. Am. Chem. Soc. 139 (2017) 11261–11270.
doi: 10.1021/jacs.7b06520
-
[39]
D.S. Brandes, A. Sirvent, B.Q. Mercado, J.A. Ellman, Org. Lett. 23 (2021) 2836–2840.
doi: 10.1021/acs.orglett.1c00851
-
[40]
K. Ozols, S. Onodera, Ł. Wozniak, N. Cramer, Angew. Chem. Int. Ed. 60 (2021) ´ 655–659.
doi: 10.1002/anie.202011140
-
[41]
S. Maity, T.J. Potter, J.A. Ellman, Nat. Catal. 2 (2019) 756–762.
doi: 10.1038/s41929-019-0330-7
-
[42]
S.G. Newman, J.K. Howell, N. Nicolaus, M. Lautens, J. Am. Chem. Soc. 133 (2011) 14916–14919.
doi: 10.1021/ja206099t
-
[43]
H. Cong, G.C. Fu, J. Am. Chem. Soc. 136 (2014) 3788–3791.
doi: 10.1021/ja500706v
-
[44]
B. Ye, P.A. Donets, N. Cramer, Angew. Chem. Int. Ed. 53 (2014) 507–511.
doi: 10.1002/anie.201309207
-
[45]
W. You, M.K. Brown, J. Am. Chem. Soc. 137 (2015) 14578–14581.
doi: 10.1021/jacs.5b10176
-
[46]
Z.M. Zhang, B. Xu, Y. Qian, et al., Angew. Chem. Int. Ed. 57 (2018) 10373–10377.
doi: 10.1002/anie.201806372
-
[47]
Z.M. Zhang, B. Xu, L. Wu, et al., J. Am. Chem. Soc. 141 (2019) 8110–8115.
doi: 10.1021/jacs.9b04332
-
[48]
R.C. Carmona, O.D. Köster, C.R.D. Correia, Angew. Chem. Int. Ed. 57 (2018) 12067–12070.
doi: 10.1002/anie.201805831
-
[49]
Z.X. Tian, J.B. Qiao, G.L. Xu, et al., J. Am. Chem. Soc. 141 (2019) 7637–7643.
doi: 10.1021/jacs.9b03863
-
[50]
Z.M. Zhang, B. Xu, L. Wu, et al., Angew. Chem. Int. Ed. 58 (2019) 14653–14659.
doi: 10.1002/anie.201907840
-
[51]
G. Li, Q. Liu, L. Vasamsetty, W. Guo, J. Wang, Angew. Chem. Int. Ed. 59 (2020) 3475–3479.
doi: 10.1002/anie.201913733
-
[52]
J. He, Y. Xue, B. Han, et al., Angew. Chem. Int. Ed. 59 (2020) 2328–2332.
doi: 10.1002/anie.201913743
-
[53]
W. Yu, C. Chen, L. Feng, et al., Org. Lett. 24 (2022) 1762–1767.
doi: 10.1021/acs.orglett.2c00029
-
[54]
Y. Wu, Z. Chen, Y. Yang, W. Zhu, B. Zhou, J. Am. Chem. Soc. 140 (2018) 42–45.
doi: 10.1021/jacs.7b10349
-
[55]
B. Zhou, Z. Chen, Y. Yang, et al., Angew. Chem. Int. Ed. 54 (2015) 12121–12126.
doi: 10.1002/anie.201505302
-
[56]
Y. Yang, X. Wang, Y. Li, B. Zhou, Angew. Chem. Int. Ed. 54 (2015) 15400–15404.
doi: 10.1002/anie.201508702
-
[57]
B. Ye, N. Cramer, Acc. Chem. Res. 48 (2015) 1308–1318.
doi: 10.1021/acs.accounts.5b00092
-
[58]
C.G. Newton, D. Kossler, N. Cramer, J. Am. Chem. Soc. 138 (2016) 3935–3941.
doi: 10.1021/jacs.5b12964
-
[59]
C.G. Newton, S.G. Wang, C.C. Oliveira, N. Cramer, Chem. Rev. 117 (2017) 8908–8976.
doi: 10.1021/acs.chemrev.6b00692
-
[60]
B. Ye, N. Cramer, Science 338 (2012) 504–506.
doi: 10.1126/science.1226938
-
[61]
T.K. Hyster, L. Knörr, T.R. Ward, T. Rovis, Science 338 (2012) 500–503.
doi: 10.1126/science.1226132
-
[62]
S. Satake, T. Kurihara, K. Nishikawa, et al., Nat. Catal. 1 (2018) 585–591.
doi: 10.1038/s41929-018-0106-5
-
[63]
W.H.B. Sauer, M.K. Schwarz, J. Chem. Inf. Comput. Sci. 43 (2003) 987–1003.
doi: 10.1021/ci025599w
-
[64]
T. Yang, Z. Li, Y. Chen, et al., Nucleic Acids Res. 49 (2021) D1170–D1178.
doi: 10.1093/nar/gkaa920
-
[65]
C. Li, D. Xu, Q. Ye, et al., Cell Stem Cell 19 (2016) 120–126.
doi: 10.3901/JME.2016.21.120
-
[66]
J.P. Messina, M.U. Kraemer, O.J. Brady, et al., eLife 5 (2016) e15272.
doi: 10.7554/eLife.15272
-
[67]
J.A. Bernatchez, L.T. Tran, J. Li, et al., J. Med. Chem. 63 (2020) 470–489.
doi: 10.1021/acs.jmedchem.9b00775
-
[68]
N. Kamiyama, R. Soma, S. Hidano, Antiviral Res. 146 (2017) 1–11.
doi: 10.1016/j.antiviral.2017.08.007
-
[69]
G. Bjørkøy, T. Lamark, A. Brech, et al., J. Cell Biol. 171 (2005) 603–614.
doi: 10.1083/jcb.200507002
-
[70]
R. Hamel, O. Dejarnac, S. Wichit, et al., J. Virol. 89 (2015) 8880–8896.
doi: 10.1128/JVI.00354-15
-
[71]
Q. Liang, Z. Luo, J. Zeng, et al., Cell Stem Cell 19 (2016) 663–671.
doi: 10.1016/j.stem.2016.07.019
-
[72]
Y.R. Lee, H.Y. Lei, M.T. Liu, et al., Virology 374 (2008) 240–248.
doi: 10.1016/j.virol.2008.02.016
-
[73]
Y. Kabeya, N. Mizushima, A. Yamamoto, et al., J. Cell Sci. 117 (2004) 2805–2812.
doi: 10.1242/jcs.01131