Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review
-
* Corresponding authors.
E-mail addresses: qjli@tongji.edu.cn (Q. Li), shunmao@tongji.edu.cn (S. Mao).
Citation: Yuxin Li, Chengbin Liu, Qiuju Li, Shun Mao. Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review[J]. Chinese Chemical Letters, ;2024, 35(10): 109541. doi: 10.1016/j.cclet.2024.109541
A. Fleming, Bull. World Health Organ. 79 (2001) 780–790.
R. Mirzaei, M. Yunesian, S. Nasseri, et al., Sci. Total Environ. 619-620 (2018) 446–459.
doi: 10.1016/j.scitotenv.2017.07.272
M. Hvistendahl, Science 336 (2012) 795-795.
doi: 10.1126/science.336.6083.795
E.Y. Klein, M. Milkowska Shibata, K.K. Tseng, et al., Lancet 21 (2021) 107–115.
doi: 10.1016/S1473-3099(20)30332-7
C. Liu, B. Li, M. Liu, et al., Sens. Actuators B: Chem. 369 (2022) 132383.
doi: 10.1016/j.snb.2022.132383
J. Marchant, Nature 555 (2018) 431–433.
doi: 10.1038/d41586-018-03267-5
X.X. Zhang, T. Zhang, H.H. Fang, Appl. Microbiol. Biotechnol. 82 (2009) 397–414.
doi: 10.1007/s00253-008-1829-z
R.L. Finley, P. Collignon, D.G.J. Larsson, et al., Clin. Infect. Dis. 57 (2013) 704–710.
doi: 10.1093/cid/cit355
K.V. Thomas, C. Dye, M. Schlabach, et al., J. Environ. Monit. 9 (2007) 1410–1418.
doi: 10.1039/b709745j
I. Michael, L. Rizzo, C.S. McArdell, et al., Water Res. 47 (2013) 957–995.
doi: 10.1016/j.watres.2012.11.027
X. Van Doorslaer, J. Dewulf, H. Van Langenhove, et al., Sci. Total Environ. 500-501 (2014) 250–269.
doi: 10.1016/j.scitotenv.2014.08.075
X. Guo, Z. Yan, Y. Zhang, et al., Environ. Sci. Pollut. Res. 24 (2017) 8769–8777.
doi: 10.1007/s11356-017-8587-3
M.J. Bueno, M.J. Gomez, S. Herrera, et al., Environ. Pollut. 164 (2012) 267–273.
doi: 10.1016/j.envpol.2012.01.038
D.J. Lapworth, N. Baran, M.E. Stuart, et al., Environ. Pollut. 163 (2012) 287–303.
doi: 10.1016/j.envpol.2011.12.034
W.C. Li, Environ. Pollut. 187 (2014) 193–201.
doi: 10.3901/JME.2014.01.193
S. Li, Y. Kuang, J. Hu, et al., Environ. Res. 190 (2020) 110029.
doi: 10.1016/j.envres.2020.110029
J. Huang, Y. Zhang, H. Bing, et al., Water Res. 201 (2021) 117309.
doi: 10.1016/j.watres.2021.117309
X. Liu, S. Lu, W. Guo, et al., Sci. Total Environ. 627 (2018) 1195–1208.
doi: 10.1016/j.scitotenv.2018.01.271
G. Na, W. Zhang, S. Zhou, et al., Mar. Pollut. Bull. 84 (2014) 70–75.
doi: 10.1016/j.marpolbul.2014.05.039
Z. Li, X. Yu, F. Yu, et al., Environ. Sci. Pollut. Res. 28 (2021) 20903–20920.
doi: 10.1007/s11356-021-12721-3
M.C. Hall, N.A. Mware, J.E. Gilley, et al., Environ. Sci. Technol. 54 (2020) 4800–4809.
doi: 10.1021/acs.est.9b04834
L. Feng, Y. Cheng, Y. Zhang, et al., Environ. Res. 185 (2020) 109386.
doi: 10.1016/j.envres.2020.109386
N. Li, X. Huang, J. Zou, et al., Sens. Actuator. B: Chem. 258 (2018) 550–557.
doi: 10.1016/j.snb.2017.11.015
W. Li, X. Dai, E. Pu, et al., J. Agr. Food Chem. 68 (2020) 14025–14037.
doi: 10.1021/acs.jafc.0c04620
G. Wang, H.C. Zhang, J. Liu, et al., Anal. Biochem. 564-565 (2019) 40–46.
doi: 10.1016/j.ab.2018.10.017
R. Yu, L. Chen, R. Shen, et al., Environ. Technol. Innov. 19 (2020) 100919.
doi: 10.1016/j.eti.2020.100919
K. Kokoszka, J. Wilk, E. Felis, et al., Chemosphere 283 (2021) 131189.
doi: 10.1016/j.chemosphere.2021.131189
A. Gorecki, P. Decewicz, M. Dziurzynski, et al., Water Res. 161 (2019) 211–221.
doi: 10.1016/j.watres.2019.06.009
C. Pu, H. Liu, G. Ding, et al., J. Hazard. Mater. 344 (2018) 441–449.
doi: 10.1016/j.jhazmat.2017.10.031
Y.N.V. Sabino, M.F. Santana, L.B. Oyama, et al., Nat. Commun. 10 (2019) 5252.
doi: 10.1038/s41467-019-13118-0
L. Ma, Y. Xia, B. Li, et al., Environ. Sci. Technol. 50 (2016) 420–427.
doi: 10.1021/acs.est.5b03522
J. Ding, D. Zhu, Y. Wang, et al., Sci. Total Environ. 792 (2021) 148417.
doi: 10.1016/j.scitotenv.2021.148417
J. Zhang, Z. Yue, C. Ding, et al., Bioresource Technol. 371 (2023) 128540.
doi: 10.1016/j.biortech.2022.128540
A. Kling, C. Chatelle, L. Armbrecht, et al., Anal. Chem. 88 (2016) 10036–10043.
doi: 10.1021/acs.analchem.6b02294
F. Meng, X. Ma, N. Duan, et al., Talanta 165 (2017) 412–418.
doi: 10.1016/j.talanta.2016.12.088
S. Kim, H.J. Lee, Anal. Chem. 89 (2017) 6624–6630.
doi: 10.1021/acs.analchem.7b00779
G. Zhang, G.M. Palmer, M.W. Dewhirst, et al., Nat. Mater. 8 (2009) 747–751.
doi: 10.1038/nmat2509
G. Tan, R. -Q. Jia, X. Zhao, et al., Inorg. Chem. 61 (2022) 11866–11878.
doi: 10.1021/acs.inorgchem.2c01619
V.D. Dang, A.B. Ganganboina, R.A. Doong, ACS Appl. Mater. Interfaces 12 (2020) 32247–32258.
doi: 10.1021/acsami.0c04645
K. Ren, S.H. Wu, X.F. Guo, et al., Inorg. Chem. 58 (2019) 4223–4229.
doi: 10.1021/acs.inorgchem.8b03284
S. Chu, H. Wang, Y. Du, et al., ACS Sustain. Chem. Eng. 8 (2020) 8175–8183.
doi: 10.1021/acssuschemeng.0c00690
X. Zeng, J. Hu, M. Zhang, et al., Anal. Chem. 92 (2019) 2097–2102.
Y. Ye, T. Wu, X. Jiang, et al., ACS Appl. Mater. Interfaces 12 (2020) 14552–14562.
doi: 10.1021/acsami.9b23167
H. Singh, B. Thakur, S.K. Bhardwaj, et al., Food Chem. 426 (2023) 136657.
doi: 10.1016/j.foodchem.2023.136657
Q. Wang, W.M. Zhao, Sens. Actuator. B: Chem. 269 (2018) 238–256.
M.R.L. Stone, M.S. Butler, W. Phetsang, et al., Trends Biotechnol. 36 (2018) 523–536.
doi: 10.1016/j.tibtech.2018.01.004
M. Marimuthu, S.S. Arumugam, D. Sabarinathan, et al., Trends Food Sci. Tech. 116 (2021) 1002–1028.
doi: 10.1016/j.tifs.2021.08.022
P. Raja Lakshmi, P. Nanjan, S. Kannan, et al., Coord. Chem. Rev. 435 (2021) 213793.
doi: 10.1016/j.ccr.2021.213793
M.L. Cui, Z.X. Lin, Q.F. Xie, et al., Food Chem. 412 (2023) 135554.
doi: 10.1016/j.foodchem.2023.135554
L. Campone, R. Celano, A.L. Piccinelli, et al., Food Res. Int. 115 (2019) 572–579.
doi: 10.1016/j.foodres.2018.09.006
A. Speltini, M. Sturini, F. Maraschi, et al., J. Chromatogr. A 1410 (2015) 44–50.
doi: 10.1016/j.chroma.2015.07.093
D. Wu, Q. Sui, X. Yu, et al., Sci. Total Environ. 753 (2021) 141653.
doi: 10.1016/j.scitotenv.2020.141653
A.N.M. Nasir, N. Yahaya, N.N.M. Zain, et al., Food Chem. 276 (2019) 458–466.
doi: 10.1016/j.foodchem.2018.10.044
E. Alipanahpour Dil, M. Ghaedi, F. Mehrabi, et al., Talanta 232 (2021) 122449.
doi: 10.1016/j.talanta.2021.122449
S. Mondal, J. Xu, G. Chen, et al., Anal. Chim. Acta 1047 (2019) 62–70.
doi: 10.1016/j.aca.2018.09.060
H. Tian, T. Liu, G. Mu, et al., Talanta 219 (2020) 121282.
doi: 10.1016/j.talanta.2020.121282
M. Zhu, H. Zhao, D. Xia, et al., Food Chem. 258 (2018) 87–94.
doi: 10.1016/j.foodchem.2018.03.051
S. Morales-Munoz, J.L. Luque-Garcia, L. de Castro, J. Chromatogr. A 1059 (2004) 25–31.
doi: 10.1016/j.chroma.2004.09.086
A. Garcia-Rodríguez, E. Sagristà, V. Matamoros, et al., Int. J. Environ. An. Ch. 94 (2014) 1199–1209.
doi: 10.1080/03067319.2014.921292
L. Luo, J. Feng, R. Xue, et al., J. Environ. Manag. 278 (2021) 111587.
doi: 10.1016/j.jenvman.2020.111587
J. Zheng, Y. Kuang, S. Zhou, et al., Anal. Chem. 95 (2023) 218–237.
doi: 10.1021/acs.analchem.2c03246
M. Llompart, M. Celeiro, C. García-Jares, et al., Trends Anal. Chem. 112 (2019) 1–12.
doi: 10.1016/j.trac.2018.12.020
V. Samanidou, K. Michaelidou, A. Kabir, et al., Food Chem. 224 (2017) 131–138.
doi: 10.1016/j.foodchem.2016.12.024
Z.M. Dong, L. Cheng, T. Sun, et al., Microchim. Acta 188 (2021) 43.
doi: 10.1093/bioinformatics/btaa669
S. Bajkacz, E. Felis, E. Kycia-Slocka, et al., Sci. Total Environ. 726 (2020) 138071.
doi: 10.1016/j.scitotenv.2020.138071
S.B. Wagh, V.A. Maslivetc, J.J. La Clair, et al., ChemBioChem 22 (2021) 3109–3139.
doi: 10.1002/cbic.202100171
G.G. Stokes, Phil. Trans. R. Soc. 142 (1997) 463–562.
F. Goppelsröder, J. Prakt. Chem. 101 (1867) 408–414.
doi: 10.1002/prac.18671010160
J. Zhao, M. Huang, L. Zhang, et al., Anal. Chem. 89 (2017) 8044–8049.
doi: 10.1021/acs.analchem.7b01443
D. Kim, K. Jeong, J.E. Kwon, et al., Nat. Commun. 10 (2019) 3089.
doi: 10.1038/s41467-019-10986-4
Y. Zhang, S. Sheng, S. Mao, et al., Water Res. 163 (2019) 114883.
doi: 10.1016/j.watres.2019.114883
X. Wang, J. Zhang, Y. Hu, et al., ACS Appl. Mater. Interfaces 14 (2022) 45137–45148.
doi: 10.1021/acsami.2c10743
X. Wang, Y. Hu, J. Mo, et al., Angew. Chem. Int. Ed. 59 (2020) 5151–5158.
doi: 10.1002/anie.201913675
T. Man, F. Zhu, Y. Huang, et al., Chin. Chem. Lett. 35 (2024) 109036.
doi: 10.1016/j.cclet.2023.109036
C. Guo, A.C. Sedgwick, T. Hirao, et al., Coord. Chem. Rev. 427 (2021) 213560.
doi: 10.1016/j.ccr.2020.213560
D. Wu, A.C. Sedgwick, T. Gunnlaugsson, et al., Chem. Soc. Rev. 46 (2017) 7105–7123.
doi: 10.1039/C7CS00240H
A.W. Czarnik, Acc. Chem. Res. 27 (1994) 302–308.
doi: 10.1021/ar00046a003
H. He, M.A. Mortellaro, M.J.P. Leiner, et al., J. Am. Chem. Soc. 125 (2003) 1468–1469.
doi: 10.1021/ja0284761
M.Y. Chae, A.W. Czarnik, J. Am. Chem. Soc. 114 (1992) 9704–9705.
doi: 10.1021/ja00050a085
D. Escudero, Accounts Chem. Res. 49 (2016) 1816–1824.
doi: 10.1021/acs.accounts.6b00299
S. Uchiyama, E. Fukatsu, G.D. McClean, et al., Angew. Chem. Int. Ed. 55 (2016) 768–771.
doi: 10.1002/anie.201509096
H. Kitoh-Nishioka, D. Yokogawa, S. Irle, J. Phys. Chem. C 121 (2017) 4220–4238.
doi: 10.1021/acs.jpcc.7b00833
J. Ma, J. Cao, J. Chem. Phys. 142 (2015) 094106.
doi: 10.1063/1.4908599
K. Kumagai, T. Uematsu, T. Torimoto, et al., Chem. Mater. 33 (2020) 1607–1617.
M. Zheng, Z. Xie, D. Qu, et al., ACS Appl. Mater. Interfaces 5 (2013) 13242–13247.
doi: 10.1021/am4042355
S. Chen, Y.L. Yu, J.H. Wang, Anal. Chim. Acta 999 (2018) 13–26.
doi: 10.1016/j.aca.2017.10.026
X. Tian, L.C. Murfin, L. Wu, et al., Chem. Sci. 12 (2021) 3406–3426.
doi: 10.1039/d0sc06928k
M. Liu, X. Yu, M. Li, et al., RSC Adv. 8 (2018) 12573–12587.
doi: 10.1039/c8ra00946e
Z. Zhang, J. Feng, P. Huang, et al., Sens. Actuator. B: Chem. 298 (2019) 126891.
doi: 10.1016/j.snb.2019.126891
H. Nouri, C. Cadiou, L.M. Lawson-Daku, et al., Dalton Trans. 42 (2013) 12157–12164.
doi: 10.1039/c3dt51216a
Kenry, B.Z. Tang, B. Liu, Chem 6 (2020) 1195–1198.
doi: 10.1016/j.chempr.2020.05.018
M. Sugiuchi, J. Maeba, N. Okubo, et al., J. Am. Chem. Soc. 139 (2017) 17731–17734.
doi: 10.1021/jacs.7b10201
Y. Zhao, Y. Xu, L. Shi, et al., Anal. Chem. 93 (2021) 11033–11042.
doi: 10.1021/acs.analchem.1c02425
S.H. Park, N. Kwon, J.H. Lee, et al., Chem. Soc. Rev. 49 (2020) 143–179.
doi: 10.1039/c9cs00243j
D. Zhao, X.H. Liu, Y. Zhao, et al., J. Mater. Chem. A 5 (2017) 15797–15807.
doi: 10.1039/C7TA03849F
H. Tan, C. Ma, Y. Song, et al., Biosens. Bioelectron. 50 (2013) 447–452.
doi: 10.1016/j.bios.2013.07.011
X.D. Zhu, K. Zhang, Y. Wang, et al., Inorg. Chem. 57 (2018) 1060–1065.
doi: 10.1021/acs.inorgchem.7b02471
M. Orylska-Ratynska, W. Placek, A. Owczarczyk-Saczonek, Int. J. Environ. Res. Public Health 19 (2022) 7246.
doi: 10.3390/ijerph19127246
S. Wang, W. Yong, J. Liu, et al., Biosens. Bioelectron. 57 (2014) 192–198.
doi: 10.1016/j.bios.2014.02.032
R. Li, W. Wang, E.S.M. El Sayed, et al., Sens. Actuators B: Chem. 330 (2021) 129314.
doi: 10.1016/j.snb.2020.129314
Z. Shen, C. Zhang, X. Yu, et al., J. Mater. Chem. C 6 (2018) 9636–9641.
doi: 10.1039/c8tc02982b
L. Zhang, L. Chen, ACS Appl. Mater. Interfaces 8 (2016) 16248–16256.
doi: 10.1021/acsami.6b04381
Q. Wang, M. Unno, H. Liu, Adv. Funct. Mater. 33 (2023) 2214875.
doi: 10.1002/adfm.202214875
K. Arkin, Y. Zheng, Y. Bei, et al., Chem. Eng. J. 464 (2023) 142552.
doi: 10.1016/j.cej.2023.142552
H. Che, Y. Nie, X. Tian, et al., J. Hazard. Mater. 441 (2023) 129956.
doi: 10.1016/j.jhazmat.2022.129956
A.D. Beaton, C.L. Cardwell, R.S. Thomas, et al., Environ. Sci. Technol. 46 (2012) 9548–9556.
doi: 10.1021/es300419u
G.S. Clinton-Bailey, M.M. Grand, A.D. Beaton, et al., Environ. Sci. Technol. 51 (2017) 9989–9995.
doi: 10.1021/acs.est.7b01581
C. Li, C. Zeng, Z. Chen, et al., J. Hazard. Mater. 384 (2020) 121498.
doi: 10.1016/j.jhazmat.2019.121498
Q. Li, X. Wang, Q. Huang, et al., Nat. Commun. 14 (2023) 409.
doi: 10.3390/microorganisms11020409
Q.Q. Zhang, G.G. Ying, C.G. Pan, et al., Environ. Sci. Technol. 49 (2015) 6772–6782.
doi: 10.1021/acs.est.5b00729
R.K. Brar, U. Jyoti, R.K. Patil, et al., Adesh Univ. J. Med. Sci. Res. 2 (2020) 26–30.
doi: 10.25259/aujmsr_12_2020
S.N. Yin, T. Yao, T.H. Wu, et al., Talanta 174 (2017) 14–20.
doi: 10.1016/j.talanta.2017.05.053
Z. Li, Z. Cui, Y. Tang, et al., Microchim. Acta 186 (2019) 334.
doi: 10.1007/s00604-019-3448-z
C.P. Li, W.W. Long, Z. Lei, et al., Chem. Commun. 56 (2020) 12403–12406.
doi: 10.1039/d0cc05175f
D.D. Yang, Y.S. Shi, T. Xiao, et al., Inorg. Chem. 62 (2023) 6084–6091.
doi: 10.1021/acs.inorgchem.3c00065
Y. Fan, W. Qiao, W. Long, et al., Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 274 (2022) 121033.
doi: 10.1016/j.saa.2022.121033
R. Aggarwal, A.K. Garg, V. Kumar, et al., ACS Appl. Nano Mater. 6 (2023) 6518–6527.
doi: 10.1021/acsanm.2c05526
H. Wang, X. Qian, X. An, Carbohydr. Polym. 287 (2022) 119337.
doi: 10.1016/j.carbpol.2022.119337
L. Yang, M. Li, L. Kuang, et al., Biosens. Bioelectron. 214 (2022) 114527.
doi: 10.1016/j.bios.2022.114527
Z. Zhou, X. Wen, C. Shi, et al., Food Chem. 417 (2023) 135883.
doi: 10.1016/j.foodchem.2023.135883
L. Lan, Y. Yao, J. Ping, et al., Biosens. Bioelectron. 91 (2017) 504–514.
doi: 10.1016/j.bios.2017.01.007
A. Joshi, K.H. Kim, Biosens. Bioelectron. 153 (2020) 112046.
doi: 10.1016/j.bios.2020.112046
J. Chen, Y. Jin, T. Ren, et al., Food Chem. 386 (2022) 132751.
doi: 10.1016/j.foodchem.2022.132751
Y.M. Wang, Z.R. Yang, L. Xiao, et al., Anal. Chem. 90 (2018) 5758–5763.
doi: 10.1021/acs.analchem.8b00086
Y. Gao, G. Yu, K. Liu, et al., Sens. Actuator. B: Chem. 257 (2018) 931–935.
doi: 10.1016/j.snb.2017.10.180
X. Wang, Q. Li, B. Zong, et al., Sens. Actuator. B: Chem. 373 (2022) 132701.
doi: 10.1016/j.snb.2022.132701
D.R. Guay, Drugs 61 (2001) 353–364.
doi: 10.2165/00003495-200161030-00004
O.B. Samuelsen, E. Solheim, B.T. Lunestad, Sci. Total Environ. 108 (1991) 275–283.
doi: 10.1016/0048-9697(91)90364-K
B. Tore Lunestad, O.B. Samuelsen, S. Fjelde, et al., Aquaculture 134 (1995) 217–225.
doi: 10.1016/0044-8486(95)00065-A
W. Wu, N. Sun, S. Zhu, et al., RSC Adv. 9 (2019) 2812–2815.
doi: 10.1039/c8ra10589h
L.E. Kreno, K. Leong, O.K. Farha, et al., Chem. Rev. 112 (2012) 1105–1125.
doi: 10.1021/cr200324t
W. Wu, Y. Xu, S. Wang, et al., Chem. Commun. 59 (2023) 5890–5893.
doi: 10.1039/d3cc00950e
Q. Chu, B. Zhang, H. Zhou, et al., Inorg. Chem. 59 (2020) 2853–2860.
doi: 10.1021/acs.inorgchem.9b03176
B. Wang, X.L. Lv, D. Feng, et al., J. Am. Chem. Soc. 138 (2016) 6204–6216.
doi: 10.1021/jacs.6b01663
G. Xian, L. Wang, X. Wan, et al., Inorg. Chem. 61 (2022) 7238–7250.
doi: 10.1021/acs.inorgchem.1c03502
Y. Liu, Y. Zhang, P.G. Karmaker, et al., ACS Appl. Mater. Interfaces 14 (2022) 51531–51544.
doi: 10.1021/acsami.2c15440
M. Yu, Y. Xie, X. Wang, et al., ACS Appl. Mater. Interfaces 11 (2019) 21201–21210.
doi: 10.1021/acsami.9b05815
X. Yue, Z. Zhou, M. Li, et al., Food Chem. 367 (2022) 130763.
doi: 10.1016/j.foodchem.2021.130763
W.L. Hewitt, B. Williams, N. Engl. J. Med. 242 (1950) 119–127.
doi: 10.1056/NEJM195001262420402
B. Liang, H.Y. Cheng, D.Y. Kong, et al., Environ. Sci. Technol. 47 (2013) 5353–5361.
doi: 10.1021/es400933h
S. Liu, J. Bai, Y. Huo, et al., Biosens. Bioelectron. 149 (2020) 111801.
doi: 10.1016/j.bios.2019.111801
B. Dong, H. Li, J. Sun, et al., J. Hazard. Mater. 402 (2021) 123942.
doi: 10.1016/j.jhazmat.2020.123942
J. Xiong, S. He, Z. Wang, et al., J. Hazard. Mater. 429 (2022) 128316.
doi: 10.1016/j.jhazmat.2022.128316
X. Wu, S. Tang, P. Zhao, et al., Food Chem. 402 (2023) 134256.
doi: 10.1016/j.foodchem.2022.134256
X. Tong, X. Lin, N. Duan, et al., ACS Sens. 7 (2022) 3947–3955.
doi: 10.1021/acssensors.2c02008
K. Tang, Y. Chen, X. Wang, et al., Anal. Chim. Acta 1260 (2023) 341174.
doi: 10.1016/j.aca.2023.341174
J. Geng, Y. Chen, S. Xie, et al., Inorg. Chem. 62 (2023) 5158–5167.
doi: 10.1021/acs.inorgchem.2c04554
R. Zhang, S. Yang, Y. An, et al., Sci. Total Environ. 806 (2022) 150647.
doi: 10.1016/j.scitotenv.2021.150647
X. Liu, P. Xiao, Y. Guo, et al., Sci. Total Environ. 693 (2019) 133585.
doi: 10.1016/j.scitotenv.2019.133585
T. Huang, Y. Zheng, Y. Yan, et al., Biosens. Bioelectron. 80 (2016) 323–330.
doi: 10.1016/j.bios.2016.01.054
D.T. Ha, V.T. Nguyen, M.S. Kim, Anal. Chem. 93 (2021) 8459–8466.
doi: 10.1021/acs.analchem.1c00560
N. Chen, C. Gong, H. Zhao, Sci. Total Environ. 882 (2023) 163559.
doi: 10.1016/j.scitotenv.2023.163559
B. Li, X. Zhou, H. Liu, et al., ACS Appl. Mater. Interfaces 10 (2018) 4494–4501.
doi: 10.1021/acsami.7b17653
A. Gupta, P. Prasad, S. Gupta, et al., ACS Appl. Mater. Interfaces 12 (2020) 35967–35976.
doi: 10.1021/acsami.0c11161
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
Peiling Li , Qing Feng , Hongling Yuan , Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022
Shuangying Li , Qingxiang Zhou , Zhi Li , Menghua Liu , Yanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693
Ziheng Zhuang , Xiao Xu , Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040
Hualei Xu , Manman Han , Haiqiang Liu , Liang Qin , Lulu Chen , Hao Hu , Ran Wu , Chenyu Yang , Hua Guo , Jinrong Li , Jinxiang Fu , Qichen Hao , Yijun Zhou , Jinchao Feng , Xiaodong Wang . 4-Nitrocatechol as a novel matrix for low-molecular-weight compounds in situ detection and imaging in biological tissues by MALDI-MSI. Chinese Chemical Letters, 2024, 35(6): 109095-. doi: 10.1016/j.cclet.2023.109095
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Zihong Li , Jie Cheng , Ping Huang , Guoliang Wu , Weiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
Yuxin Xiao , Xiaowei Wang , Yutong Yin , Fangchao Yin , Jinchao Li , Zhiyuan Hou , Mashooq Khan , Rusong Zhao , Wenli Wu , Qiongzheng Hu . Distance-based lateral flow biosensor for the quantitative detection of bacterial endotoxin. Chinese Chemical Letters, 2024, 35(12): 109718-. doi: 10.1016/j.cclet.2024.109718
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242