Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions
-
* Corresponding author.
E-mail address: lwy@bjfu.edu.cn (W. Liang).
Citation:
Yulong Liu, Haoran Lu, Tong Yang, Peng Cheng, Xu Han, Wenyan Liang. Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions[J]. Chinese Chemical Letters,
;2024, 35(10): 109492.
doi:
10.1016/j.cclet.2024.109492
F.L. Dong, Z. Pang, S.Y. Yang, et al., ACS Nano 16 (2022) 3449–3475.
doi: 10.1021/acsnano.1c10755
Y.W. Fei, N. Han, M.H. Zhang, et al., Chemosphere 307 (2022) 135718.
doi: 10.1016/j.chemosphere.2022.135718
S. Lim, J.L. Shi, U. von Gunten, D.L. McCurry, Water Res. 213 (2022) 118053.
doi: 10.1016/j.watres.2022.118053
K.X. Yin, R.X. Wu, Y.N. Shang, et al., Appl. Catal. B Environ. 329 (2023) 122558.
doi: 10.1016/j.apcatb.2023.122558
Z.C. Shangguan, X.Z. Yuan, L.B. Jiang, et al., Chin. Chem. Lett. 33 (2022) 4719–4731.
doi: 10.1016/j.cclet.2022.01.001
Y.Y. Zhou, M.C. Cui, Y.M. Ren, et al., Chemosphere 306 (2022) 135547.
doi: 10.1016/j.chemosphere.2022.135547
K. GracePavithra, P. Senthil Kumar, V. Jaikumar, P. SundarRajan, Rev. Environ. Sci. Biotechnol. 19 (2020) 873–896.
doi: 10.1007/s11157-020-09550-0
M.X. Yang, Z.X. Hou, X. Zhang, et al., Environ. Sci. Technol. 56 (2022) 11635–11645.
doi: 10.1021/acs.est.2c01261
R.D. Su, N. Li, Z. Liu, et al., Environ. Sci. Technol. 57 (2023) 1882–1893.
doi: 10.1021/acs.est.2c04903
Y.N. Shang, X.N. Liu, Y.W. Li, et al., Chem. Eng. J. 446 (2022) 137120.
doi: 10.1016/j.cej.2022.137120
X. Liang, N.H. Fu, S.C. Yao, Z. Li, Y.D. Li, J. Am. Chem. Soc. 144 (2022) 18155–18174.
doi: 10.1021/jacs.1c12642
S. Liang, Z. Jia, W.C. Zhang, W.M. Wang, L.C. Zhang, Mater. Des. 119 (2017) 244–253.
doi: 10.1016/j.matdes.2017.01.039
D.S. Song, J.H. Kim, E. Fleury, W.T. Kim, D.H. Kim, J. Alloys Compd. 389 (2005) 159–164.
doi: 10.1016/j.jallcom.2004.08.014
J.L. Wu, Z. Peng, Appl. Phys. A 124 (2018) 632.
doi: 10.1007/s00339-018-2057-8
X.L. Zhang, J.L. Sun, J. Luo, B.B. Wang, J.L. Cheng, Mater. Sci. Technol. 33 (2017) 1186–1191.
doi: 10.1080/02670836.2016.1271934
H.B. Lu, L.C. Zhang, A. Gebert, L. Schultz, J. Alloys Compd. 462 (2008) 60–67.
doi: 10.1016/j.jallcom.2007.08.023
J. Henao, A. Concustell, I.G. Cano, et al., Mater. Des. 94 (2016) 253–261.
doi: 10.1016/j.matdes.2016.01.040
B. Zhang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Phys. Rev. B 70 (2004) 224208.
doi: 10.1103/PhysRevB.70.224208
J.L. Zhang, Y.M. Wang, C.H. Shek, J. Appl. Phys. 110 (2011) 083919.
doi: 10.1063/1.3650244
L. Xia, M.B. Tang, H. Xu, et al., J. Mater. Res. 19 (2004) 1307–1310.
doi: 10.1557/JMR.2004.0172
S.T. Rajan, A.K. Nandakumar, T. Hanawa, B. Subramanian, J. Non Cryst. Solids 461 (2017) 104–112.
doi: 10.1016/j.jnoncrysol.2017.01.008
W. Klement, R.H. Willens, P.O.L. Duwez, Nature 187 (1960) 869–870.
doi: 10.1038/187869b0
Y.C. Hu, Y.W. Li, Y. Yang, et al., Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 6375–6380.
doi: 10.1073/pnas.1802300115
D.C. Hofmann, S.N. Roberts, NPJ Microgravity 1 (2015) 15003.
doi: 10.1038/npjmgrav.2015.3
M. Fan, A. Nawano, J. Schroers, M.D. Shattuck, C.S. O'Hern, J. Chem. Phys. 151 (2019) 144506.
doi: 10.1063/1.5116895
S.T. Rajan, A. Arockiarajan, J. Alloys Compd. 876 (2021) 159939.
doi: 10.1016/j.jallcom.2021.159939
Q. Halim, N.A.N. Mohamed, M.R.T. Rejab, W.N.W.A. Naim, Q. Ma, Int. J. Adv. Manuf. Technol. 112 (2021) 1231–1258.
doi: 10.1007/s00170-020-06515-z
S.X. Liang, L.C. Zhang, Mater. Sci. Forum 960 (2019) 200–206.
doi: 10.4028/www.scientific.net/msf.960.200
A. Molnar, Appl. Surf. Sci. 257 (2011) 8151–8164.
doi: 10.1016/j.apsusc.2010.12.046
S.H. Xie, P. Huang, J.J. Kruzic, X.R. Zeng, H.X. Qian, Sci. Rep. 6 (2016) 21947.
doi: 10.1038/srep21947
J.Q. Wang, Y.H. Liu, M.W. Chen, et al., Adv. Funct. Mater. 22 (2012) 2567–2570.
doi: 10.1002/adfm.201103015
Y.N. Shang, Y.J. Kan, X. Xu, Chin. Chem. Lett. 34 (2023) 108278.
doi: 10.1016/j.cclet.2023.108278
L.C. Zhang, Z. Jia, F.C. Lyu, S.X. Liang, J. Lu, Prog. Mater Sci. 105 (2019) 100576.
doi: 10.1016/j.pmatsci.2019.100576
S.X. Liang, Z. Jia, Y.J. Liu, et al., Adv. Mater. 30 (2018) 1802764.
doi: 10.1002/adma.201802764
X.Y. Li, W.Z. Cai, D.S. Li, et al., Nano Res. 16 (2021) 4277–4288.
doi: 10.1039/d1se00919b
X. Han, G. Wu, Y.Y. Ge, et al., Adv. Mater. 34 (2022) 2206994.
doi: 10.1002/adma.202206994
J.Z. Xie, S. Ewing, J.N. Boyn, et al., Nature 611 (2022) 479–484.
doi: 10.1038/s41586-022-05261-4
Y. Pei, G.B. Zhou, L. Nguyen, et al., Chem. Soc. Rev. 41 (2012) 8140–8162.
doi: 10.1039/c2cs35182j
Á. Molnáar, G.V. Smith, M. Bartók, Adv. Catal. 36 (1989) 329–383.
C.J. Byrne, M. Eldrup, Science 321 (2008) 502–503.
doi: 10.1126/science.1158864
Z. Jia, Q. Wang, L.G. Sun, et al., Adv. Funct. Mater. 29 (2019) 1807857.
doi: 10.1002/adfm.201807857
C.Q. Zhang, Z.W. Zhu, H.F. Zhang, J. Phys. Chem. Solids 110 (2017) 152–160.
doi: 10.1016/j.jpcs.2017.06.010
S.H. Xie, Y.L. Xie, J.J. Kruzic, et al., ChemCatChem 12 (2020) 750–761.
doi: 10.1002/cctc.201901623
A. Studer, D.P. Curran, Nat. Chem. 6 (2014) 765–773.
doi: 10.1038/nchem.2031
F. Hu, S.L. Zhu, S.M. Chen, et al., Adv. Mater. 29 (2017) 1606570.
doi: 10.1002/adma.201606570
Y.C. Hu, Y.Z. Wang, R. Su, et al., Adv. Mater. 28 (2016) 10293–10297.
doi: 10.1002/adma.201603880
C. Yang, C. Zhang, Z.J. Chen, et al., ACS Appl. Mater. Interfaces 13 (2021) 7227–7237.
doi: 10.1021/acsami.0c20832
W.H. Wang, J. Appl. Phys. 110 (2011) 053521.
doi: 10.1063/1.3632972
C. Chang, H.P. Zhang, R. Zhao, et al., Nat. Mater. 21 (2022) 1240–1245.
doi: 10.1038/s41563-022-01327-w
Y.Q. Yan, X. Liang, J. Ma, J. Shen, Intermetallics 124 (2020) 106849.
doi: 10.1016/j.intermet.2020.106849
S.X. Liang, W.C. Zhang, L.N. Zhang, W.M. Wang, L.C. Zhang, Sustain. Mater. Technol. 22 (2019) e00126.
G.F. Lv, D.C. Wu, R.W. Fu, J. Hazard. Mater. 165 (2009) 961–966.
doi: 10.1016/j.jhazmat.2008.10.090
Z. Deng, C. Zhang, L. Liu, Intermetallics 52 (2014) 9–14.
doi: 10.1016/j.intermet.2014.03.007
P. Wang, X.F. Bian, Y.X. Li, Chin. Sci. Bull. 57 (2012) 33–40.
doi: 10.1007/s11434-011-4876-2
L. Wan, C. Li, G. Long, et al., Colloids Surf. A Physicochem. Eng. Asp. 645 (2022) 128924.
doi: 10.1016/j.colsurfa.2022.128924
X.C. Xu, Z.L. Shi, K.Q. Qiu, Mater. Res. Express 7 (2020) 045205.
doi: 10.1088/2053-1591/ab89df
H.Z. Zhao, Y. Sun, L.N. Xu, J.R. Ni, Chemosphere 78 (2010) 46–51.
doi: 10.1016/j.chemosphere.2009.10.034
N.R. Neti, R. Misra, Chem. Eng. J. 184 (2012) 23–32.
doi: 10.1016/j.cej.2011.12.014
P. Pal, R. Kumar, Sep. Purif. Rev. 43 (2014) 89–123.
doi: 10.1080/15422119.2012.717161
X.D. Qin, Z.K. Li, Z.W. Zhu, D.W. Fang, H.F. Zhang, J. Phys. Chem. Solids 133 (2019) 85–91.
doi: 10.1016/j.jpcs.2019.05.017
J.F. Yang, X.F. Bian, Y.W. Bai, X.Q. Lv, P. Wang, J. Non Cryst. Solids 358 (2012) 2571–2574.
doi: 10.1016/j.jnoncrysol.2012.06.002
X.Y. Li, R.L. Lv, W.M. Zhang, et al., Water Res. 228 (2023) 119363.
doi: 10.1016/j.watres.2022.119363
J.Q. Wang, Y.H. Liu, M.W. Chen, et al., Sci. Rep. 2 (2012) 418.
doi: 10.1038/srep00418
Z. Jia, X.G. Duan, P. Qin, et al., Adv. Funct. Mater. 27 (2017) 1702258.
doi: 10.1002/adfm.201702258
B.W. Zhao, Y.L. Liu, H. Zhang, et al., Sustain. Mater. Technol. 35 (2023) e00539.
Y. Tang, Y. Shao, N. Chen, K.F. Yao, RSC Adv. 5 (2015) 6215–6221.
doi: 10.1039/C4RA10000J
Z. Jia, J. Kang, W.C. Zhang, et al., Appl. Catal. B Environ. 204 (2017) 537–547.
doi: 10.1016/j.apcatb.2016.12.001
Z. Jia, X.G. Duan, W.C. Zhang, et al., Sci. Rep. 6 (2016) 38520.
doi: 10.1038/srep38520
Z. Jia, S.X. Liang, W.C. Zhang, et al., J. Taiwan Inst. Chem. Eng. 71 (2017) 128–136.
doi: 10.1016/j.jtice.2016.11.021
X.F. Wang, Y. Pan, Z.R. Zhu, J.L. Wu, Chemosphere 117 (2014) 638–643.
doi: 10.1016/j.chemosphere.2014.09.055
C.Q. Zhang, Z.W. Zhu, H.F. Zhang, Z.Q. Hu, J. Environ. Sci. 24 (2012) 1021–1026.
doi: 10.1016/S1001-0742(11)60894-2
Q.Q. Wang, M.X. Chen, P.H. Lin, et al., J. Mater. Chem. A 6 (2018) 10686–10699.
doi: 10.1039/c8ta01534a
C.Q. Zhang, H.F. Zhang, M.Q. Lv, Z.Q. Hu, J. Non Cryst. Solids 356 (2010) 1703–1706.
doi: 10.1016/j.jnoncrysol.2010.06.019
C.Q. Zhang, Z.W. Zhu, H.F. Zhang, Z.Q. Hu, J. Non Cryst. Solids 358 (2012) 61–64.
doi: 10.1016/j.jnoncrysol.2011.08.023
C.Q. Zhang, Q.L. Sun, J. Non Cryst. Solids 470 (2017) 93–98.
doi: 10.1016/j.jnoncrysol.2017.05.009
N. Weng, F. Wang, F.X. Qin, W.Y. Tang, Z.H. Dan, Materials 10 (2017) 1001.
doi: 10.3390/ma10091001
J.C. Wang, Z. Jia, S.X. Liang, et al., Mater. Des. 140 (2018) 73–84.
doi: 10.14257/ijfgcn.2018.11.5.07
S.Q. Chen, G.N. Yang, S.T. Luo, et al., J. Mater. Chem. A 5 (2017) 14230–14240.
doi: 10.1039/C7TA01206C
Q.Q. Wang, L. Yun, M.X. Chen, et al., ACS Appl. Nano Mater. 2 (2019) 214–227.
doi: 10.1021/acsanm.8b01669
M.Q. Zuo, S. Yi, J. Choi, J. Environ. Sci. 105 (2021) 116–127.
doi: 10.1016/j.jes.2020.12.032
B.W. Zhao, Z.W. Zhu, X.D. Qin, Z.K. Li, H.F. Zhang, J. Mater. Sci. Technol. 46 (2020) 88–97.
doi: 10.1016/j.jmst.2019.12.012
Y.Y. Cai, J.Y. Li, G.F. Qu, et al., Water Environ. Res. 93 (2021) 1243–1253.
doi: 10.1002/wer.1533
Z.W. Lv, Y.Q. Yan, C.C. Yuan, et al., Mater. Des. 194 (2020) 108876.
doi: 10.1016/j.matdes.2020.108876
X.D. Qin, Z.K. Li, Z.W. Zhu, et al., J. Mater. Sci. Technol. 34 (2018) 2290–2296.
doi: 10.1016/j.jmst.2018.04.012
Z.W. Deng, B.W. Zhao, S.T. Li, et al., J. Environ. Sci. 136 (2022) 537–546.
doi: 10.1109/tec.2021.3092786
K.S. Aneeshkumar, J.S. Tian, J. Shen, Chin. Chem. Lett. 33 (2022) 2327–2344.
doi: 10.1016/j.cclet.2021.12.013
V. Poza-Nogueiras, E. Rosales, M. Pazos, M.A. Sanroman, Chemosphere 201 (2018) 399–416.
doi: 10.1016/j.chemosphere.2018.03.002
M.Q. Zuo, M. Moztahida, D.S. Lee, S. Yi, Chemosphere 287 (2022) 132175.
doi: 10.1016/j.chemosphere.2021.132175
S.X. Liang, Z. Jia, W.C. Zhang, et al., Appl. Catal. B: Environ. 221 (2018) 108–118.
doi: 10.1016/j.apcatb.2017.09.007
M.F. Tang, L.M. Lai, D.Y. Ding, et al., J. Non-Cryst. Solids 576 (2022) 121282.
doi: 10.1016/j.jnoncrysol.2021.121282
Q. Chen, Z.G. Qi, Y. Feng, et al., J. Mol. Liq. 364 (2022) 120058.
doi: 10.1016/j.molliq.2022.120058
F. Miao, Q.Q. Wang, Q.S. Zeng, et al., J. Mater. Sci. Technol. 38 (2020) 107–118.
doi: 10.1016/j.jmst.2019.07.050
X.Q. Wang, Q.Y. Zhang, S.X. Liang, et al., Catalysts 10 (2020) 48.
doi: 10.3390/catal10010048
E. Saputra, S. Muhammad, H. Sun, et al., J. Colloid Interface Sci. 407 (2013) 467–473.
doi: 10.1016/j.jcis.2013.06.061
P. Shukla, H. Sun, S. Wang, H.M. Ang, M.O. Tadé, Sep. Purif. Technol. 77 (2011) 230–236.
doi: 10.1016/j.seppur.2010.12.011
P. Shukla, S. Wang, K. Singh, H.M. Ang, M.O. Tadé, Appl. Catal. B: Environ. 99 (2010) 163–169.
doi: 10.1016/j.apcatb.2010.06.013
P. Shukla, H. Sun, S. Wang, H.M. Ang, M.O. Tadé, Catal. Today 175 (2011) 380–385.
doi: 10.1016/j.cattod.2011.03.005
Y. Yang, H. Zhang, Y. Yan, R. Soc. Open Sci. 5 (2018) 171731.
doi: 10.1098/rsos.171731
J.X. Chen, L.Z. Zhu, Catal. Today 126 (2007) 463–470.
doi: 10.1016/j.cattod.2007.06.022
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Shili Wang , Mamitiana Roger Razanajatovo , Xuedong Du , Shunli Wan , Xin He , Qiuming Peng , Qingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Yufei Liu , Liang Xiong , Bingyang Gao , Qingyun Shi , Ying Wang , Zhiya Han , Zhenhua Zhang , Zhaowei Ma , Limin Wang , Yong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932
Guanxiong Yu , Chengkai Xu , Huaqiang Ju , Jie Ren , Guangpeng Wu , Chengjian Zhang , Xinghong Zhang , Zhen Xu , Weipu Zhu , Hao-Cheng Yang , Haoke Zhang , Jianzhao Liu , Zhengwei Mao , Yang Zhu , Qiao Jin , Kefeng Ren , Ziliang Wu , Hanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893
Zhikang Wu , Guoyong Dai , Qi Li , Zheyu Wei , Shi Ru , Jianda Li , Hongli Jia , Dejin Zang , Mirjana Čolović , Yongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
Yanling Yang , Zhenfa Ding , Huimin Wang , Jianhui Li , Yanping Zheng , Hongquan Guo , Li Zhang , Bing Yang , Qingqing Gu , Haifeng Xiong , Yifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400