Citation:
Uttam Pandurang Patil. Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview[J]. Chinese Chemical Letters,
;2024, 35(8): 109472.
doi:
10.1016/j.cclet.2023.109472
-
Heterogeneous porous carbon (PC) materials have gained unique importance in the catalysis community due to their captivating properties, including high specific surface area, tunable porosity, and functionality. PC can play a prominent role in the sustainable synthesis of functional heterocycles, as they are a low-cost alternative while being an efficient and user-friendly material. This review examines the preparation and applicability of these carbonaceous materials used as catalysts or support for biologically active heterocycles synthesis, including hydrogenation, oxidation, oxidative dehydrogenation, cross-coupling, and other organic reactions. Moreover, the challenges, potential future development directions, and opportunities in the synthesis of potent bioactive heterocycles over PC materials have been addressed. This review will inspire further research to explore novel PC materials and their implications in heterocyclization.
-
-
-
[1]
U.P. Patil, S.S. Patil, Top. Curr. Chem. 379 (2021) 36. doi: 10.1007/s41061-021-00346-6
-
[2]
J. Hagen, Industrial Catalysis: A Practical Approach, 3ed, Wiley-VCH, Weinheim, 2015.
-
[3]
Y. Cao, S. Mao, M. Li, Y. Chen, Y. Wang, ACS Catal. 7 (2017) 8090–8112. doi: 10.1021/acscatal.7b02335
-
[4]
H.O. Pierson, Element Carbon, Noyes Publications Park Ridge, New Jersey, 1993.
-
[5]
M. Inagaki, H. Itoi, F. Kang, Porous Carbons Synthesis and Applications, Elsevier Inc., 2022.
-
[6]
M.N. Sarvi, T.B. Bee, C.K. Gooi, et al., Chem. Eng. J. 235 (2014) 244–251. doi: 10.1016/j.cej.2013.09.036
-
[7]
L. Xu, L. Guo, G. Hu, et al., RSC Adv. 5 (2015) 37964–37969. doi: 10.1039/C5RA04421A
-
[8]
J. Jampilek, Molecules 24 (2019) 3839. doi: 10.3390/molecules24213839
-
[9]
S. Chaudhuri, A. Ghosh, S.K. Chattopadhyay, Green Synthetic Approaches For Medium Ring-Sized Heterocycles of Biological and Pharmaceutical Interest, Elsevier, 2021.
-
[10]
M. Li, F. Xu, H. Li, Y. Wang, Catal. Sci. Technol. 6 (2016) 3670–3693. doi: 10.1039/C6CY00544F
-
[11]
Y. Lin, J. Yu, X. Zhang, et al., Chin. Chem. Lett. 33 (2022) 186–196. doi: 10.1016/j.cclet.2021.06.045
-
[12]
S. De, A.M. Balu, J.C. van der Waal, R. Luque, ChemCatChem 7 (2015) 1608–1629. doi: 10.1002/cctc.201500081
-
[13]
A. Rai, K.V.S. Ranganath, J. Hetero. Chem. 58 (2020) 1039–1057.
-
[14]
E. Pérez-Mayoral, I. Matos, M. Bernardo, I.M. Fonseca, Catalysts 9 (2019) 133. doi: 10.3390/catal9020133
-
[15]
A. Khan, M. Goepel, J.C. Colmenares, R. Gläser, ACS Sustain. Chem. Eng. 8 (2020) 4708–4727. doi: 10.1021/acssuschemeng.9b07522
-
[16]
Y. Rangraz, M.M. Heravi, A. Elhampour, Chem. Rec. 21 (2021)1985–2073. doi: 10.1002/tcr.202100124
-
[17]
H. Li, L. Chen, X. Li, D. Sun, H. Zhang, Nano-Micro Lett. 14 (2022) 1–35. doi: 10.1007/s40820-021-00751-y
-
[18]
C. Xu, M. Stromme, Nanomater. 16 (2019) 103.
-
[19]
Y. Liang, C. Yang, H. Dong, et al., ACS Sustain. Chem. Eng. 5 (2017) 7111–7117. doi: 10.1021/acssuschemeng.7b01315
-
[20]
J. Mi, X.R. Wang, R.J. Fan, W.H. Qu, W.C. Li, Energy Fuels 26 (2012) 5321–5329. doi: 10.1021/ef3009234
-
[21]
W. Lv, J. Xiang, F. Wen, et al., Electrochim. Acta 153 (2015) 49–54. doi: 10.1016/j.electacta.2014.11.098
-
[22]
C. Ma, J. Bai, M. Demir, et al., Sep. Purif. Technol. 303 (2022) 122299. doi: 10.1016/j.seppur.2022.122299
-
[23]
N. Zhang, Y. Shen, Bioresour. Technol. 284 (2019) 325–332. doi: 10.3390/foods8080325
-
[24]
S. Khedr, M. Shouman, N. Fathy, A. Attia, Int. Scholar. Res. Notices (2014) 1–10. doi: 10.1155/2014/705069
-
[25]
J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Small Methods 4 (2020) 1900853. doi: 10.1002/smtd.201900853
-
[26]
R.C. Bansal, J.B. Donnet, F. Stoeckli, Active Carbon, New York, 1988.
-
[27]
H. Yi, K. Nakabayashi, S.H. Yoon, J. Miyawaki, Carbon 183 (2021) 735–742. doi: 10.1016/j.carbon.2021.07.061
-
[28]
A. Colomba, F. Berruti, C. Briens, J. Anal. Appl. Pyrolysis 168 (2022) 105769. doi: 10.1016/j.jaap.2022.105769
-
[29]
J. Pallarés, A. González-Cencerrado, I. Arauzo, Biomass Bioenergy 115 (2018) 64–73. doi: 10.1016/j.biombioe.2018.04.015
-
[30]
M.A.A. Zaini, L.L. Zhi, T.S. Hui, Y. Amano, M. Machida, Mater. Today: Proc. 39 (2021) 917–921. doi: 10.1016/j.matpr.2020.03.815
-
[31]
M. Gao, S.Y. Pan, W.C. Chen, P.C. Chiang, Mater. Today Energy 7 (2018) 58–79. doi: 10.1016/j.mtener.2017.12.005
-
[32]
Z. Heidarinejad, M.H. Dehghani, M. Heidari, et al., Environ. Chem. Lett. 18 (2020) 393–415. doi: 10.1007/s10311-019-00955-0
-
[33]
Z. Pan, S. Yu, L. Wang, et al., Nanomaterials 13 (2023) 1744. doi: 10.3390/nano13111744
-
[34]
P.J. Johnson, D.J. Setsuda, R.S. Williams, Activated carbon for automotive applications, in: T.D. Burchell (Ed.), Carbon Materials for Advanced Technologies, Elsevier Science Ltd., 1999, pp. 235–268.
-
[35]
M.K.B. Gratuito, T. Panyathanmaporn, R.A. Chumnanklang, N. Sirinuntawittaya, A. Dutta, Bioresour. Technol. 99 (2008) 4887–4895. doi: 10.1016/j.biortech.2007.09.042
-
[36]
X. Cui, F. Jia, Y. Chen, J. Gan, Ecotoxicology 20 (2011)1277–1285. doi: 10.1007/s10646-011-0684-3
-
[37]
N. Wang, T. Li, Y. Song, J. Liu, F. Wang, Carbon 130 (2018) 692–700. doi: 10.1016/j.carbon.2018.01.068
-
[38]
J. Jjagwe, P.W. Olupot, E. Menya, H.M. Kalibbala, J. Bioresour. Bioprod. 6 (2021) 292–322. doi: 10.1016/j.jobab.2021.03.003
-
[39]
K. Adlak, R. Chandra, V.K. Vijay, K.K. Pant, J. Anal. Appl. Pyrolysis 155 (2021) 105102. doi: 10.1016/j.jaap.2021.105102
-
[40]
W. Ao, J. Fu, X. Mao, et al., Renew. Sustain. Energy Rev. 92 (2018) 958–979. doi: 10.1016/j.rser.2018.04.051
-
[41]
Y. Gao, Q. Wang, G. Ji, A. Li, J. Niu, RSC Adv. 11(2021) 5361–5383. doi: 10.1039/d0ra08993a
-
[42]
B. Wang, T.P. Ang, A. Borgna, Microporous Mesoporous Mater. 158 (2012) 99–107. doi: 10.1016/j.micromeso.2012.03.020
-
[43]
S. Zhang, X. Zhang, S. Zhang, et al., Carbon Capture Sci. Technol. 9 (2023) 100135. doi: 10.1016/j.ccst.2023.100135
-
[44]
Z. Wang, K.G. Burra, T. Lei, A.K. Gupta, Prog. Energy Combust. Sci. 84 (2021) 100899. doi: 10.1016/j.pecs.2020.100899
-
[45]
Y. Xu, R.S. Sprick, N.J. Brownbill, et al., J. Mater. Chem. A 9 (2021) 3303–3308. doi: 10.1039/d0ta11649a
-
[46]
H. Li, X. Fang, F. Lv, et al., Nano Res. 16 (2023) 3879–3887. doi: 10.1007/s12274-023-5540-2
-
[47]
R. Wang, R. Wu, X. Yan, et al., Adv. Funct. Mater. 32 (2022) 2200424. doi: 10.1002/adfm.202200424
-
[48]
L. Jiao, G. Wan, R. Zhang, et al., Angew. Chem. Int. Ed. 57 (2018) 8525. doi: 10.1002/anie.201803262
-
[49]
T. Kyotani, Carbon 38 (2000) 269–286. doi: 10.1016/S0008-6223(99)00142-6
-
[50]
S. Mehdipour-Ataei, E. Aram, Catalysts 13 (2023) 2.
-
[51]
W. Xin, Y. Song, RSC Adv. 5 (2015) 83239–83285. doi: 10.1039/C5RA16864C
-
[52]
F. Schüth, Angew. Chem. Int. Ed. 42 (2003) 3604–3622. doi: 10.1002/anie.200300593
-
[53]
N. Díez, M. Sevilla, A.B. Fuertes, Carbon 178 (2021) 451–476. doi: 10.1016/j.carbon.2021.03.029
-
[54]
W. Zhang, R. Cheng, H. Bi, et al., New Carbon Mater. 36 (2021) 69–81. doi: 10.1016/S1872-5805(21)60005-7
-
[55]
C.X. Bai, F. Shen, X.H. Qi, Chin. Chem. Lett. 28 (2017) 960–962. doi: 10.1016/j.cclet.2016.12.026
-
[56]
L. Xie, Z. Jin, Z. Dai, et al., Carbon 170 (2020) 100–118. doi: 10.1016/j.carbon.2020.07.034
-
[57]
N. Mei, Z. Lei, L. Yancen, N. Runtao, Front. Chem. 11 (2023) 1–5.
-
[58]
Q. Wang, Y. Mu, W. Zhang, et al., RSC Adv. 4 (2014) 32113–32116. doi: 10.1039/C4RA02743D
-
[59]
Y. Hu, C. Tang, H. Li, et al., Chin. Chem. Lett. 33 (2022) 480–485. doi: 10.1016/j.cclet.2021.06.063
-
[60]
A.G. Sadekar, S.S. Mahadik, A.N. Bang, et al., Chem. Mater. 24 (2012) 26–47. doi: 10.1021/cm202975p
-
[61]
X. Yang, D. Yang, G. Zhang, H. Zuo, J. Power Sources 482 (2021) 229135. doi: 10.1016/j.jpowsour.2020.229135
-
[62]
C. Liang, Z. Li, S. Dai, Angew. Chem. Int. Ed. 47 (2008) 3696–3717. doi: 10.1002/anie.200702046
-
[63]
U.P. Patil, R.C. Patil, S.S. Patil, J. Hetero. Chem. 56 (2019) 1898–1913. doi: 10.1002/jhet.3564
-
[64]
U.P. Patil, R.C. Patil, S.S. Patil, Reac. Kinet. Mech. Cat. 129 (2020) 679–691. doi: 10.1007/s11144-020-01743-6
-
[65]
U.P. Patil, R.C. Patil, S.S. Patil, Org. Prep. Proced. Int. 53 (2021) 190–199. doi: 10.1080/00304948.2020.1871309
-
[66]
X. Wang, Z. Wang, Z. Li, K. Sun, Chin. Chem. Lett. 34 (2023) 108045. doi: 10.1016/j.cclet.2022.108045
-
[67]
C. Tran, A. Abdallah, V. Duchemann, G. Lefèvre, A. Hamze, Chin. Chem. Lett. 34 (2023) 107758. doi: 10.1016/j.cclet.2022.107758
-
[68]
R.I. Kureshy, I. Ahmad, K. Pathak, et al., Catal. Commun. 10 (2009) 572–575. doi: 10.1016/j.catcom.2008.10.035
-
[69]
L. Han, Z. Yuan, X. Shao, X. Xu, Z. Li, Chin. Chem. Lett. 34 (2023) 107868. doi: 10.1016/j.cclet.2022.107868
-
[70]
U.P. Patil, S.U. Patil, Indian J. Chem. Technol. 30 (2023) 265–277.
-
[71]
M.K. Sahoo, E. Balaraman, Green Chem. 21 (2019) 2119–2128. doi: 10.1039/c9gc00201d
-
[72]
K. Sun, H. Shan, R. Ma, et al., Chem. Sci. 13 (2022) 6865. doi: 10.1039/d2sc01838a
-
[73]
M. Krivec, M. Gazvoda, K. Kranjc, et al., J. Org. Chem. 77 (2012) 2857–2864. doi: 10.1021/jo3000783
-
[74]
T. Su, K. Sun, G. Lu, C. Cai, ACS Sustain. Chem. Eng. 10 (2022) 3872–3881. doi: 10.1021/acssuschemeng.1c07649
-
[75]
J.J. Liu, F.H. Guo, F.J. Cui, et al., New J. Chem. 46 (2022) 1791–1799. doi: 10.1039/d1nj05411b
-
[76]
C. Yang, X. Li, Z. Zhang, et al., Fuel 278 (2020) 118361. doi: 10.1016/j.fuel.2020.118361
-
[77]
F.A. Kucherov, L.V. Romashov, K.I. Galkin, et al., ACS Sustain. Chem. Eng. 6 (2018) 8064–8092. doi: 10.1021/acssuschemeng.8b00971
-
[78]
J.P. Ma, Z.T. Du, J. Xu, Q.H. Chu, Y. Pang, ChemSusChem 4 (2011) 51–54. doi: 10.1002/cssc.201000273
-
[79]
Q. Girka, N. Hausser, B. Estrine, et al., Green Chem. 19 (2017) 4074–4079. doi: 10.1039/C7GC01534H
-
[80]
R. Fang, R. Luque, Y. Li, Green Chem. 18 (2016) 3152–3157. doi: 10.1039/C5GC03051J
-
[81]
A. Corma, O. de la Torre, M. Renz, ChemSusChem 4 (2011) 1574–1577. doi: 10.1002/cssc.201100296
-
[82]
J. Artz, S. Mallmann, R. Palkovits, ChemSusChem 8 (2015) 672–679. doi: 10.1002/cssc.201403078
-
[83]
Z.H. Zhang, Z.L. Yuan, D.G. Tang, et al., ChemSusChem 7 (2014) 3496–3504. doi: 10.1002/cssc.201402402
-
[84]
A. Takagaki, M. Takahashi, S. Nishimura, K. Ebitani, ACS Catal. 1 (2011) 1562–1565. doi: 10.1021/cs200456t
-
[85]
C. Po-Yee, B. Zhao-Xiang, P. Ho-Yuen, et al., Future Med. Chem. 7 (2015) 947–967. doi: 10.4155/fmc.15.34
-
[86]
J. Marco-Contelles, E. Prez-Mayoral, A. Samadi, et al., Chem. Rev. 109 (2009) 2652–2671. doi: 10.1021/cr800482c
-
[87]
M. Godino-Ojer, S. Morales-Torres, E. Prez-Mayoral, et al., J. Environ. Chem. Eng. 10 (2022) 106879. doi: 10.1016/j.jece.2021.106879
-
[88]
J. López-Sanz, E. Pérez-Mayoral, E. Soriano, et al., ChemCatChem 5 (2013) 3736–3742. doi: 10.1002/cctc.201300626
-
[89]
Z. Chen, J. Song, X. Peng, S. Xi, et al., Adv. Mater. 33 (2021) 2101382. doi: 10.1002/adma.202101382
-
[90]
A. Corma, O. de la Torre, M. Renz, et al., Energ. Environ. Sci. 5 (2012) 6328–6344. doi: 10.1039/c2ee02778j
-
[91]
R. Zhong, Y. Liao, B.F. Sels, et al., ACS Sustain. Chem. Eng. 6 (2018) 7859–7870. doi: 10.1021/acssuschemeng.8b01003
-
[92]
I.F. Florentino, D.P.B. Silva, D.M. Silva, et al., Nitric Oxide 69 (2017) 35–44. doi: 10.1016/j.niox.2017.04.006
-
[93]
Y. Yoon, B.R. Kim, C.Y. Lee, J. Kim, Asian J. Org. Chem. 5 (2016) 746–749. doi: 10.1002/ajoc.201600121
-
[94]
P. Zhang, E.A. Terefenko, et al., J. Med. Chem. 45 (2002) 4379–4382. doi: 10.1021/jm025555e
-
[95]
X. Long, J. Wang, G. Gao, et al., ACS Catal. 11 (2021)10902–10912. doi: 10.1021/acscatal.1c02264
-
[96]
R.K. Singh, S. Sharma, A. Kaur, M. Saini, S. Kumar, Iran. J. Catal. 6 (2016) 1–22.
-
[97]
S. Grattini, E. Mussini, L.O. Randall, Benzodiazepines, Raven Press, New York 1973, pp. 27.
-
[98]
M. Godino-Ojer, I. Matos, E. Perez-Mayoral, et al., Catal. Today 357 (2020) 64–73. doi: 10.1016/j.cattod.2019.11.027
-
[99]
I. Muthukrishnan, V. Sridharan, J.C. Menendez, Chem. Rev. 119 (2019) 5057–519. doi: 10.1021/acs.chemrev.8b00567
-
[100]
Y. Gong, P. Zhang, X. Xu, et al., J. Catal. 297 (2013) 272–280. doi: 10.1016/j.jcat.2012.10.018
-
[101]
X. Wang, W. Chen, L. Zhang, et al., J. Am. Chem. Soc. 139 (2017) 9419–9422. doi: 10.1021/jacs.7b01686
-
[102]
F. Zhang, C. Ma, S. Chen, et al., Mole. Catal. 452 (2018) 145–153. doi: 10.1016/j.mcat.2018.04.001
-
[103]
D. Ren, L. He, L. Yu, et al., J. Am. Chem. Soc. 134 (2012) 17592–17598. doi: 10.1021/ja3066978
-
[104]
R. Yun, L. Hong, W. Ma, S. Wang, B. Zheng, ACS Appl. Nano Mater. 2 (2019) 6763–6768. doi: 10.1021/acsanm.9b01702
-
[105]
Y. Cao, L. Ding, Z. Qiu, H. Zhang, Catal. Commun. 143 (2020) 106048. doi: 10.1016/j.catcom.2020.106048
-
[106]
A.K. Kar, R. Srivastava, ACS Sustain. Chem. Eng. 7 (2019) 13136–13147. doi: 10.1021/acssuschemeng.9b02307
-
[107]
R. Xu, L. Kang, J. Knossalla, et al., ACS Nano 13 (2019) 2463–2472.
-
[108]
Y. Zhu, X. Kong, H. Zheng, et al., Catal. Sci. Technol. 5 (2015) 4208–4217. doi: 10.1039/C5CY00700C
-
[109]
A.S. Nagpure, N. Lucas, S.V. Chilukuri, ACS Sustain. Chem. Eng. 3 (2015) 2909–2916. doi: 10.1021/acssuschemeng.5b00857
-
[110]
Y. Zu, P. Yang, J. Wang, et al., ACS Sustain. Chem. Eng. 146 (2014) 244–248.
-
[111]
G.H. Wang, J. Hilgert, F.H. Richter, et al., Nat. Mater. 13 (2014) 293. doi: 10.1038/nmat3872
-
[112]
B. Saha, C.M. Bohn, M.M. Abu-Omar, ChemSusChem 7 (2014) 3095–3101. doi: 10.1002/cssc.201402530
-
[113]
X. Kong, Y. Zhu, H. Zheng, et al., RSC Adv. 4 (2014) 60467–60472. doi: 10.1039/C4RA09550B
-
[114]
L. Hu, X. Tang, J. Xu, et al., Ind. Eng. Chem. Res. 53 (2014) 3056–3064. doi: 10.1021/ie404441a
-
[115]
H. Hu, J. Xi, Chin. Chem. Lett. 34 (2023) 107959. doi: 10.1016/j.cclet.2022.107959
-
[116]
L. Huang, H. Zhang, Y. Cheng, et al., Chin. Chem. Lett. 33 (2022) 2569–2572. doi: 10.1016/j.cclet.2021.10.004
-
[117]
S. Zhong, R. Daniel, H. Xu, et al., Energy Fuels 24 (2010) 2891–2899. doi: 10.1021/ef901575a
-
[118]
B. Li, Y. Chen, W. Guan, et al., Energy Fuels 35 (2021) 4191–4202. doi: 10.1021/acs.energyfuels.0c04401
-
[119]
Y. Nie, Q. Hou, C. Bai, et al., J. Cleaner Prod. 274 (2020) 123023. doi: 10.1016/j.jclepro.2020.123023
-
[120]
Y.L. Zhang, W. Guan, H. Song, et al., Microporous Mesoporous Mater. 305 (2020) 110328. doi: 10.1016/j.micromeso.2020.110328
-
[121]
E. Sezgin, M.E. Kececi, S. Akmaz, S.N. Koc, Cellulose 26 (2019) 9035–9043. doi: 10.1007/s10570-019-02702-8
-
[122]
Y.L. Zhang, J.J. Zhao, K. Wang, et al., ChemistrySelect 3 (2018) 9378–9387. doi: 10.1002/slct.201801893
-
[123]
N. Candu, M.E. Fergani, M. Verziu, et al., Catal. Today 325 (2019) 109–116. doi: 10.1016/j.cattod.2018.08.004
-
[124]
J. Guo, S. Zhu, Y. Cen, et al., Appl. Catal. B 200 (2017) 611–619. doi: 10.1016/j.apcatb.2016.07.051
-
[125]
C. García-Sancho, I. Fúnez-Núñez, R. Moreno-Tost, et al., Appl. Catal. B: Environ. 206 (2017) 617–625. doi: 10.1016/j.apcatb.2017.01.065
-
[126]
C. Yue, G. Li, E.A. Pidko, et al., ChemSusChem 9 (2016) 2421–2429. doi: 10.1002/cssc.201600649
-
[127]
F. Shahangi, A.N. Chermahini, M.J.J. Saraji, J. Energy Chem. 27 (2018) 769–780. doi: 10.1016/j.jechem.2017.06.004
-
[128]
Q.D. Hou, M.N. Zhen, W.Z. Li, et al., Appl. Catal. B 253 (2019) 1–10. doi: 10.1016/j.apcatb.2019.04.003
-
[129]
I. Elsayed, M. Mashaly, F. Eltaweel, M.A. Jackson, E.B. Hassan, Fuel 221 (2018) 407–416. doi: 10.1016/j.fuel.2018.02.135
-
[130]
F.M. Huang, T.Y. Jiang, X.C. Xu, et al., P.J. Catal. Sci. Technol. 10 (2020) 7857–7864. doi: 10.1039/d0cy01601b
-
[131]
B. Zhang, A. Studer, Chem. Soc. Rev. 44 (2015) 3505–3521. doi: 10.1039/C5CS00083A
-
[132]
T. Song, P. Ren, Z. Ma, J. Xiaoc, Y. Yang, ACS Sustain. Chem. Eng. 8 (2020) 267–277. doi: 10.1021/acssuschemeng.9b05298
-
[133]
G. Ji, Y. Duan, S. Zhang, Y. Yang, Catal. Today 330 (2019) 101–108. doi: 10.1016/j.cattod.2018.04.036
-
[134]
J.A. Pereira, A.M. Pessoa, et al., Eur. J. Med. Chem. 97 (2015) 664–672. doi: 10.1016/j.ejmech.2014.06.058
-
[135]
S. Shee, D. Panja, S. Kundu, J. Org. Chem. 85 (2020) 2775–2784. doi: 10.1021/acs.joc.9b03104
-
[136]
M. Godino-Ojer, R. Blazquez-García, E. Perez-Mayoral, et al., Catal. Today 354 (2020) 90–99. doi: 10.1016/j.cattod.2019.06.043
-
[137]
M.H. Beyzavi, C.J. Stephenson, et al., Front. Energy Res. 2 (2015) 128097.
-
[138]
D. Polidoro, A. Perosa, E. Rodriquez-Castellon, et al., ACS Sustain. Chem. Eng. 10 (2022) 13835–13848. doi: 10.1021/acssuschemeng.2c04443
-
[139]
P. Salisaeng, P. Arnnok, N. Patdhanagul, R. Burakham, J. Agric. Food. Chem. 64 (2016) 2145–2152. doi: 10.1021/acs.jafc.5b05437
-
[140]
C.S. Cao, S.M. Xia, Z.J. Song, et al., Angew. Chem. Int. Ed. 59 (2020) 8586–8593. doi: 10.1002/anie.201914596
-
[141]
M. Chen, Q. Wu, C. Lin, et al., ACS Appl. Mater. Interfaces 12 (2020) 40236–40247. doi: 10.1021/acsami.0c08001
-
[142]
M.A. Patel, F. Luo, M.R. Khoshi, et al., ACS Nano 10 (2016) 2305–2315. doi: 10.1021/acsnano.5b07054
-
[143]
H. Kim, J.C. Jung, P. Kim, K.Y. Lee, S.H. Yeom, I.K. Song, Preparation of heteropolyacid/carbon catalyst and its application to methacrolein oxidation, in: E.M. Gaigneaux, M. Devillers, D.E. De Vos, et al. (Eds. ), Studies in Surface Science and Catalysis, Elsevier Inc. 2006, pp. 801–808.
-
[1]
-
-
-
[1]
Shuai Tang , Zian Wang , Mengyi Zhu , Xinyun Zhao , Xiaoyun Hu , Hua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503
-
[2]
Yu-Yao Li , Xiao-Hui Li , Zhi-Xuan An , Yang Chu , Xiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716
-
[3]
Kailu Guo , Jinzhi Jia , Huijiao Wang , Ziyu Hao , Yinjian Chen , Ke Shi , Haixia Wu , Cailing Xu . Structural tuning and reconstruction of CeO2-coupled nickel selenides for robust water oxidation. Chinese Chemical Letters, 2025, 36(8): 110888-. doi: 10.1016/j.cclet.2025.110888
-
[4]
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
-
[5]
Liyang Qin , Luna Wu , Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545
-
[6]
Yujie Wang , Haoran Wang , Yanni Liu , Manhua Peng , Hongwei Fan , Hong Meng . A comprehensive review on the scalable and sustainable synthesis of covalent organic frameworks. Chinese Chemical Letters, 2025, 36(8): 110189-. doi: 10.1016/j.cclet.2024.110189
-
[7]
Jia-Cheng Hou , Hong-Tao Ji , Yu-Han Lu , Jia-Sheng Wang , Yao-Dan Xu , Yan-Yan Zeng , Wei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514
-
[8]
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
-
[9]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[10]
Qiao Song , Xue Peng , Zhouyu Wang , Leyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869
-
[11]
Bofeng Li , Yuxian Wang , Ya Liu , Zhe Han , Tiantian Xing , Yumin Zhang , Chunmao Chen . Design and engineering strategies of porous carbonaceous catalysts toward activation of peroxides for aqueous organic pollutants oxidation. Chinese Chemical Letters, 2025, 36(6): 110374-. doi: 10.1016/j.cclet.2024.110374
-
[12]
Xin He , Feng Liu , Tao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621
-
[13]
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
-
[14]
Haijiao Li , Mingzu Zhang , Jinlin He , Jian Liu , Xingwei Sun , Peihong Ni . Synthesis of curcumin polyprodrug via click chemistry and construction of dual-drug-loaded nano platform for highly efficient tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110615-. doi: 10.1016/j.cclet.2024.110615
-
[15]
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
-
[16]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[17]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[18]
Mingxin Song , Lijing Xie , Fangyuan Su , Zonglin Yi , Quangui Guo , Cheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266
-
[19]
Yan Luo , Yan-Jiao Lu , Mei-Mei Pan , Yu-Feng Liang , Wei-Min Shi , Chun-Hua Chen , Cui Liang , Gui-Fa Su , Dong-Liang Mo . Rapidly diastereoselective assembly of ten-membered N-heterocycles between two 1,3-dipoles and their diversity to access fused N-heterocycles. Chinese Chemical Letters, 2025, 36(5): 110207-. doi: 10.1016/j.cclet.2024.110207
-
[20]
Hefei Yang , Le-Cheng Wang , Xiao-Feng Wu . Sustainable carbonylative transformation of alkyl iodides to amides via crosslinking of EDA and XAT. Chinese Chemical Letters, 2025, 36(9): 110843-. doi: 10.1016/j.cclet.2025.110843
-
[1]
Metrics
- PDF Downloads(4)
- Abstract views(1127)
- HTML views(25)