Citation: Uttam Pandurang Patil. Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview[J]. Chinese Chemical Letters, ;2024, 35(8): 109472. doi: 10.1016/j.cclet.2023.109472
-
Heterogeneous porous carbon (PC) materials have gained unique importance in the catalysis community due to their captivating properties, including high specific surface area, tunable porosity, and functionality. PC can play a prominent role in the sustainable synthesis of functional heterocycles, as they are a low-cost alternative while being an efficient and user-friendly material. This review examines the preparation and applicability of these carbonaceous materials used as catalysts or support for biologically active heterocycles synthesis, including hydrogenation, oxidation, oxidative dehydrogenation, cross-coupling, and other organic reactions. Moreover, the challenges, potential future development directions, and opportunities in the synthesis of potent bioactive heterocycles over PC materials have been addressed. This review will inspire further research to explore novel PC materials and their implications in heterocyclization.
-
-
[1]
U.P. Patil, S.S. Patil, Top. Curr. Chem. 379 (2021) 36. doi: 10.1007/s41061-021-00346-6
-
[2]
J. Hagen, Industrial Catalysis: A Practical Approach, 3ed, Wiley-VCH, Weinheim, 2015.
-
[3]
Y. Cao, S. Mao, M. Li, Y. Chen, Y. Wang, ACS Catal. 7 (2017) 8090–8112. doi: 10.1021/acscatal.7b02335
-
[4]
H.O. Pierson, Element Carbon, Noyes Publications Park Ridge, New Jersey, 1993.
-
[5]
M. Inagaki, H. Itoi, F. Kang, Porous Carbons Synthesis and Applications, Elsevier Inc., 2022.
-
[6]
M.N. Sarvi, T.B. Bee, C.K. Gooi, et al., Chem. Eng. J. 235 (2014) 244–251. doi: 10.1016/j.cej.2013.09.036
-
[7]
L. Xu, L. Guo, G. Hu, et al., RSC Adv. 5 (2015) 37964–37969. doi: 10.1039/C5RA04421A
-
[8]
J. Jampilek, Molecules 24 (2019) 3839. doi: 10.3390/molecules24213839
-
[9]
S. Chaudhuri, A. Ghosh, S.K. Chattopadhyay, Green Synthetic Approaches For Medium Ring-Sized Heterocycles of Biological and Pharmaceutical Interest, Elsevier, 2021.
-
[10]
M. Li, F. Xu, H. Li, Y. Wang, Catal. Sci. Technol. 6 (2016) 3670–3693. doi: 10.1039/C6CY00544F
-
[11]
Y. Lin, J. Yu, X. Zhang, et al., Chin. Chem. Lett. 33 (2022) 186–196. doi: 10.1016/j.cclet.2021.06.045
-
[12]
S. De, A.M. Balu, J.C. van der Waal, R. Luque, ChemCatChem 7 (2015) 1608–1629. doi: 10.1002/cctc.201500081
-
[13]
A. Rai, K.V.S. Ranganath, J. Hetero. Chem. 58 (2020) 1039–1057.
-
[14]
E. Pérez-Mayoral, I. Matos, M. Bernardo, I.M. Fonseca, Catalysts 9 (2019) 133. doi: 10.3390/catal9020133
-
[15]
A. Khan, M. Goepel, J.C. Colmenares, R. Gläser, ACS Sustain. Chem. Eng. 8 (2020) 4708–4727. doi: 10.1021/acssuschemeng.9b07522
-
[16]
Y. Rangraz, M.M. Heravi, A. Elhampour, Chem. Rec. 21 (2021)1985–2073. doi: 10.1002/tcr.202100124
-
[17]
H. Li, L. Chen, X. Li, D. Sun, H. Zhang, Nano-Micro Lett. 14 (2022) 1–35. doi: 10.1007/s40820-021-00751-y
-
[18]
C. Xu, M. Stromme, Nanomater. 16 (2019) 103.
-
[19]
Y. Liang, C. Yang, H. Dong, et al., ACS Sustain. Chem. Eng. 5 (2017) 7111–7117. doi: 10.1021/acssuschemeng.7b01315
-
[20]
J. Mi, X.R. Wang, R.J. Fan, W.H. Qu, W.C. Li, Energy Fuels 26 (2012) 5321–5329. doi: 10.1021/ef3009234
-
[21]
W. Lv, J. Xiang, F. Wen, et al., Electrochim. Acta 153 (2015) 49–54. doi: 10.1016/j.electacta.2014.11.098
-
[22]
C. Ma, J. Bai, M. Demir, et al., Sep. Purif. Technol. 303 (2022) 122299. doi: 10.1016/j.seppur.2022.122299
-
[23]
N. Zhang, Y. Shen, Bioresour. Technol. 284 (2019) 325–332. doi: 10.3390/foods8080325
-
[24]
S. Khedr, M. Shouman, N. Fathy, A. Attia, Int. Scholar. Res. Notices (2014) 1–10. doi: 10.1155/2014/705069
-
[25]
J. Yin, W. Zhang, N.A. Alhebshi, N. Salah, H.N. Alshareef, Small Methods 4 (2020) 1900853. doi: 10.1002/smtd.201900853
-
[26]
R.C. Bansal, J.B. Donnet, F. Stoeckli, Active Carbon, New York, 1988.
-
[27]
H. Yi, K. Nakabayashi, S.H. Yoon, J. Miyawaki, Carbon 183 (2021) 735–742. doi: 10.1016/j.carbon.2021.07.061
-
[28]
A. Colomba, F. Berruti, C. Briens, J. Anal. Appl. Pyrolysis 168 (2022) 105769. doi: 10.1016/j.jaap.2022.105769
-
[29]
J. Pallarés, A. González-Cencerrado, I. Arauzo, Biomass Bioenergy 115 (2018) 64–73. doi: 10.1016/j.biombioe.2018.04.015
-
[30]
M.A.A. Zaini, L.L. Zhi, T.S. Hui, Y. Amano, M. Machida, Mater. Today: Proc. 39 (2021) 917–921. doi: 10.1016/j.matpr.2020.03.815
-
[31]
M. Gao, S.Y. Pan, W.C. Chen, P.C. Chiang, Mater. Today Energy 7 (2018) 58–79. doi: 10.1016/j.mtener.2017.12.005
-
[32]
Z. Heidarinejad, M.H. Dehghani, M. Heidari, et al., Environ. Chem. Lett. 18 (2020) 393–415. doi: 10.1007/s10311-019-00955-0
-
[33]
Z. Pan, S. Yu, L. Wang, et al., Nanomaterials 13 (2023) 1744. doi: 10.3390/nano13111744
-
[34]
P.J. Johnson, D.J. Setsuda, R.S. Williams, Activated carbon for automotive applications, in: T.D. Burchell (Ed.), Carbon Materials for Advanced Technologies, Elsevier Science Ltd., 1999, pp. 235–268.
-
[35]
M.K.B. Gratuito, T. Panyathanmaporn, R.A. Chumnanklang, N. Sirinuntawittaya, A. Dutta, Bioresour. Technol. 99 (2008) 4887–4895. doi: 10.1016/j.biortech.2007.09.042
-
[36]
X. Cui, F. Jia, Y. Chen, J. Gan, Ecotoxicology 20 (2011)1277–1285. doi: 10.1007/s10646-011-0684-3
-
[37]
N. Wang, T. Li, Y. Song, J. Liu, F. Wang, Carbon 130 (2018) 692–700. doi: 10.1016/j.carbon.2018.01.068
-
[38]
J. Jjagwe, P.W. Olupot, E. Menya, H.M. Kalibbala, J. Bioresour. Bioprod. 6 (2021) 292–322. doi: 10.1016/j.jobab.2021.03.003
-
[39]
K. Adlak, R. Chandra, V.K. Vijay, K.K. Pant, J. Anal. Appl. Pyrolysis 155 (2021) 105102. doi: 10.1016/j.jaap.2021.105102
-
[40]
W. Ao, J. Fu, X. Mao, et al., Renew. Sustain. Energy Rev. 92 (2018) 958–979. doi: 10.1016/j.rser.2018.04.051
-
[41]
Y. Gao, Q. Wang, G. Ji, A. Li, J. Niu, RSC Adv. 11(2021) 5361–5383. doi: 10.1039/d0ra08993a
-
[42]
B. Wang, T.P. Ang, A. Borgna, Microporous Mesoporous Mater. 158 (2012) 99–107. doi: 10.1016/j.micromeso.2012.03.020
-
[43]
S. Zhang, X. Zhang, S. Zhang, et al., Carbon Capture Sci. Technol. 9 (2023) 100135. doi: 10.1016/j.ccst.2023.100135
-
[44]
Z. Wang, K.G. Burra, T. Lei, A.K. Gupta, Prog. Energy Combust. Sci. 84 (2021) 100899. doi: 10.1016/j.pecs.2020.100899
-
[45]
Y. Xu, R.S. Sprick, N.J. Brownbill, et al., J. Mater. Chem. A 9 (2021) 3303–3308. doi: 10.1039/d0ta11649a
-
[46]
H. Li, X. Fang, F. Lv, et al., Nano Res. 16 (2023) 3879–3887. doi: 10.1007/s12274-023-5540-2
-
[47]
R. Wang, R. Wu, X. Yan, et al., Adv. Funct. Mater. 32 (2022) 2200424. doi: 10.1002/adfm.202200424
-
[48]
L. Jiao, G. Wan, R. Zhang, et al., Angew. Chem. Int. Ed. 57 (2018) 8525. doi: 10.1002/anie.201803262
-
[49]
T. Kyotani, Carbon 38 (2000) 269–286. doi: 10.1016/S0008-6223(99)00142-6
-
[50]
S. Mehdipour-Ataei, E. Aram, Catalysts 13 (2023) 2.
-
[51]
W. Xin, Y. Song, RSC Adv. 5 (2015) 83239–83285. doi: 10.1039/C5RA16864C
-
[52]
F. Schüth, Angew. Chem. Int. Ed. 42 (2003) 3604–3622. doi: 10.1002/anie.200300593
-
[53]
N. Díez, M. Sevilla, A.B. Fuertes, Carbon 178 (2021) 451–476. doi: 10.1016/j.carbon.2021.03.029
-
[54]
W. Zhang, R. Cheng, H. Bi, et al., New Carbon Mater. 36 (2021) 69–81. doi: 10.1016/S1872-5805(21)60005-7
-
[55]
C.X. Bai, F. Shen, X.H. Qi, Chin. Chem. Lett. 28 (2017) 960–962. doi: 10.1016/j.cclet.2016.12.026
-
[56]
L. Xie, Z. Jin, Z. Dai, et al., Carbon 170 (2020) 100–118. doi: 10.1016/j.carbon.2020.07.034
-
[57]
N. Mei, Z. Lei, L. Yancen, N. Runtao, Front. Chem. 11 (2023) 1–5.
-
[58]
Q. Wang, Y. Mu, W. Zhang, et al., RSC Adv. 4 (2014) 32113–32116. doi: 10.1039/C4RA02743D
-
[59]
Y. Hu, C. Tang, H. Li, et al., Chin. Chem. Lett. 33 (2022) 480–485. doi: 10.1016/j.cclet.2021.06.063
-
[60]
A.G. Sadekar, S.S. Mahadik, A.N. Bang, et al., Chem. Mater. 24 (2012) 26–47. doi: 10.1021/cm202975p
-
[61]
X. Yang, D. Yang, G. Zhang, H. Zuo, J. Power Sources 482 (2021) 229135. doi: 10.1016/j.jpowsour.2020.229135
-
[62]
C. Liang, Z. Li, S. Dai, Angew. Chem. Int. Ed. 47 (2008) 3696–3717. doi: 10.1002/anie.200702046
-
[63]
U.P. Patil, R.C. Patil, S.S. Patil, J. Hetero. Chem. 56 (2019) 1898–1913. doi: 10.1002/jhet.3564
-
[64]
U.P. Patil, R.C. Patil, S.S. Patil, Reac. Kinet. Mech. Cat. 129 (2020) 679–691. doi: 10.1007/s11144-020-01743-6
-
[65]
U.P. Patil, R.C. Patil, S.S. Patil, Org. Prep. Proced. Int. 53 (2021) 190–199. doi: 10.1080/00304948.2020.1871309
-
[66]
X. Wang, Z. Wang, Z. Li, K. Sun, Chin. Chem. Lett. 34 (2023) 108045. doi: 10.1016/j.cclet.2022.108045
-
[67]
C. Tran, A. Abdallah, V. Duchemann, G. Lefèvre, A. Hamze, Chin. Chem. Lett. 34 (2023) 107758. doi: 10.1016/j.cclet.2022.107758
-
[68]
R.I. Kureshy, I. Ahmad, K. Pathak, et al., Catal. Commun. 10 (2009) 572–575. doi: 10.1016/j.catcom.2008.10.035
-
[69]
L. Han, Z. Yuan, X. Shao, X. Xu, Z. Li, Chin. Chem. Lett. 34 (2023) 107868. doi: 10.1016/j.cclet.2022.107868
-
[70]
U.P. Patil, S.U. Patil, Indian J. Chem. Technol. 30 (2023) 265–277.
-
[71]
M.K. Sahoo, E. Balaraman, Green Chem. 21 (2019) 2119–2128. doi: 10.1039/c9gc00201d
-
[72]
K. Sun, H. Shan, R. Ma, et al., Chem. Sci. 13 (2022) 6865. doi: 10.1039/d2sc01838a
-
[73]
M. Krivec, M. Gazvoda, K. Kranjc, et al., J. Org. Chem. 77 (2012) 2857–2864. doi: 10.1021/jo3000783
-
[74]
T. Su, K. Sun, G. Lu, C. Cai, ACS Sustain. Chem. Eng. 10 (2022) 3872–3881. doi: 10.1021/acssuschemeng.1c07649
-
[75]
J.J. Liu, F.H. Guo, F.J. Cui, et al., New J. Chem. 46 (2022) 1791–1799. doi: 10.1039/d1nj05411b
-
[76]
C. Yang, X. Li, Z. Zhang, et al., Fuel 278 (2020) 118361. doi: 10.1016/j.fuel.2020.118361
-
[77]
F.A. Kucherov, L.V. Romashov, K.I. Galkin, et al., ACS Sustain. Chem. Eng. 6 (2018) 8064–8092. doi: 10.1021/acssuschemeng.8b00971
-
[78]
J.P. Ma, Z.T. Du, J. Xu, Q.H. Chu, Y. Pang, ChemSusChem 4 (2011) 51–54. doi: 10.1002/cssc.201000273
-
[79]
Q. Girka, N. Hausser, B. Estrine, et al., Green Chem. 19 (2017) 4074–4079. doi: 10.1039/C7GC01534H
-
[80]
R. Fang, R. Luque, Y. Li, Green Chem. 18 (2016) 3152–3157. doi: 10.1039/C5GC03051J
-
[81]
A. Corma, O. de la Torre, M. Renz, ChemSusChem 4 (2011) 1574–1577. doi: 10.1002/cssc.201100296
-
[82]
J. Artz, S. Mallmann, R. Palkovits, ChemSusChem 8 (2015) 672–679. doi: 10.1002/cssc.201403078
-
[83]
Z.H. Zhang, Z.L. Yuan, D.G. Tang, et al., ChemSusChem 7 (2014) 3496–3504. doi: 10.1002/cssc.201402402
-
[84]
A. Takagaki, M. Takahashi, S. Nishimura, K. Ebitani, ACS Catal. 1 (2011) 1562–1565. doi: 10.1021/cs200456t
-
[85]
C. Po-Yee, B. Zhao-Xiang, P. Ho-Yuen, et al., Future Med. Chem. 7 (2015) 947–967. doi: 10.4155/fmc.15.34
-
[86]
J. Marco-Contelles, E. Prez-Mayoral, A. Samadi, et al., Chem. Rev. 109 (2009) 2652–2671. doi: 10.1021/cr800482c
-
[87]
M. Godino-Ojer, S. Morales-Torres, E. Prez-Mayoral, et al., J. Environ. Chem. Eng. 10 (2022) 106879. doi: 10.1016/j.jece.2021.106879
-
[88]
J. López-Sanz, E. Pérez-Mayoral, E. Soriano, et al., ChemCatChem 5 (2013) 3736–3742. doi: 10.1002/cctc.201300626
-
[89]
Z. Chen, J. Song, X. Peng, S. Xi, et al., Adv. Mater. 33 (2021) 2101382. doi: 10.1002/adma.202101382
-
[90]
A. Corma, O. de la Torre, M. Renz, et al., Energ. Environ. Sci. 5 (2012) 6328–6344. doi: 10.1039/c2ee02778j
-
[91]
R. Zhong, Y. Liao, B.F. Sels, et al., ACS Sustain. Chem. Eng. 6 (2018) 7859–7870. doi: 10.1021/acssuschemeng.8b01003
-
[92]
I.F. Florentino, D.P.B. Silva, D.M. Silva, et al., Nitric Oxide 69 (2017) 35–44. doi: 10.1016/j.niox.2017.04.006
-
[93]
Y. Yoon, B.R. Kim, C.Y. Lee, J. Kim, Asian J. Org. Chem. 5 (2016) 746–749. doi: 10.1002/ajoc.201600121
-
[94]
P. Zhang, E.A. Terefenko, et al., J. Med. Chem. 45 (2002) 4379–4382. doi: 10.1021/jm025555e
-
[95]
X. Long, J. Wang, G. Gao, et al., ACS Catal. 11 (2021)10902–10912. doi: 10.1021/acscatal.1c02264
-
[96]
R.K. Singh, S. Sharma, A. Kaur, M. Saini, S. Kumar, Iran. J. Catal. 6 (2016) 1–22.
-
[97]
S. Grattini, E. Mussini, L.O. Randall, Benzodiazepines, Raven Press, New York 1973, pp. 27.
-
[98]
M. Godino-Ojer, I. Matos, E. Perez-Mayoral, et al., Catal. Today 357 (2020) 64–73. doi: 10.1016/j.cattod.2019.11.027
-
[99]
I. Muthukrishnan, V. Sridharan, J.C. Menendez, Chem. Rev. 119 (2019) 5057–519. doi: 10.1021/acs.chemrev.8b00567
-
[100]
Y. Gong, P. Zhang, X. Xu, et al., J. Catal. 297 (2013) 272–280. doi: 10.1016/j.jcat.2012.10.018
-
[101]
X. Wang, W. Chen, L. Zhang, et al., J. Am. Chem. Soc. 139 (2017) 9419–9422. doi: 10.1021/jacs.7b01686
-
[102]
F. Zhang, C. Ma, S. Chen, et al., Mole. Catal. 452 (2018) 145–153. doi: 10.1016/j.mcat.2018.04.001
-
[103]
D. Ren, L. He, L. Yu, et al., J. Am. Chem. Soc. 134 (2012) 17592–17598. doi: 10.1021/ja3066978
-
[104]
R. Yun, L. Hong, W. Ma, S. Wang, B. Zheng, ACS Appl. Nano Mater. 2 (2019) 6763–6768. doi: 10.1021/acsanm.9b01702
-
[105]
Y. Cao, L. Ding, Z. Qiu, H. Zhang, Catal. Commun. 143 (2020) 106048. doi: 10.1016/j.catcom.2020.106048
-
[106]
A.K. Kar, R. Srivastava, ACS Sustain. Chem. Eng. 7 (2019) 13136–13147. doi: 10.1021/acssuschemeng.9b02307
-
[107]
R. Xu, L. Kang, J. Knossalla, et al., ACS Nano 13 (2019) 2463–2472.
-
[108]
Y. Zhu, X. Kong, H. Zheng, et al., Catal. Sci. Technol. 5 (2015) 4208–4217. doi: 10.1039/C5CY00700C
-
[109]
A.S. Nagpure, N. Lucas, S.V. Chilukuri, ACS Sustain. Chem. Eng. 3 (2015) 2909–2916. doi: 10.1021/acssuschemeng.5b00857
-
[110]
Y. Zu, P. Yang, J. Wang, et al., ACS Sustain. Chem. Eng. 146 (2014) 244–248.
-
[111]
G.H. Wang, J. Hilgert, F.H. Richter, et al., Nat. Mater. 13 (2014) 293. doi: 10.1038/nmat3872
-
[112]
B. Saha, C.M. Bohn, M.M. Abu-Omar, ChemSusChem 7 (2014) 3095–3101. doi: 10.1002/cssc.201402530
-
[113]
X. Kong, Y. Zhu, H. Zheng, et al., RSC Adv. 4 (2014) 60467–60472. doi: 10.1039/C4RA09550B
-
[114]
L. Hu, X. Tang, J. Xu, et al., Ind. Eng. Chem. Res. 53 (2014) 3056–3064. doi: 10.1021/ie404441a
-
[115]
H. Hu, J. Xi, Chin. Chem. Lett. 34 (2023) 107959. doi: 10.1016/j.cclet.2022.107959
-
[116]
L. Huang, H. Zhang, Y. Cheng, et al., Chin. Chem. Lett. 33 (2022) 2569–2572. doi: 10.1016/j.cclet.2021.10.004
-
[117]
S. Zhong, R. Daniel, H. Xu, et al., Energy Fuels 24 (2010) 2891–2899. doi: 10.1021/ef901575a
-
[118]
B. Li, Y. Chen, W. Guan, et al., Energy Fuels 35 (2021) 4191–4202. doi: 10.1021/acs.energyfuels.0c04401
-
[119]
Y. Nie, Q. Hou, C. Bai, et al., J. Cleaner Prod. 274 (2020) 123023. doi: 10.1016/j.jclepro.2020.123023
-
[120]
Y.L. Zhang, W. Guan, H. Song, et al., Microporous Mesoporous Mater. 305 (2020) 110328. doi: 10.1016/j.micromeso.2020.110328
-
[121]
E. Sezgin, M.E. Kececi, S. Akmaz, S.N. Koc, Cellulose 26 (2019) 9035–9043. doi: 10.1007/s10570-019-02702-8
-
[122]
Y.L. Zhang, J.J. Zhao, K. Wang, et al., ChemistrySelect 3 (2018) 9378–9387. doi: 10.1002/slct.201801893
-
[123]
N. Candu, M.E. Fergani, M. Verziu, et al., Catal. Today 325 (2019) 109–116. doi: 10.1016/j.cattod.2018.08.004
-
[124]
J. Guo, S. Zhu, Y. Cen, et al., Appl. Catal. B 200 (2017) 611–619. doi: 10.1016/j.apcatb.2016.07.051
-
[125]
C. García-Sancho, I. Fúnez-Núñez, R. Moreno-Tost, et al., Appl. Catal. B: Environ. 206 (2017) 617–625. doi: 10.1016/j.apcatb.2017.01.065
-
[126]
C. Yue, G. Li, E.A. Pidko, et al., ChemSusChem 9 (2016) 2421–2429. doi: 10.1002/cssc.201600649
-
[127]
F. Shahangi, A.N. Chermahini, M.J.J. Saraji, J. Energy Chem. 27 (2018) 769–780. doi: 10.1016/j.jechem.2017.06.004
-
[128]
Q.D. Hou, M.N. Zhen, W.Z. Li, et al., Appl. Catal. B 253 (2019) 1–10. doi: 10.1016/j.apcatb.2019.04.003
-
[129]
I. Elsayed, M. Mashaly, F. Eltaweel, M.A. Jackson, E.B. Hassan, Fuel 221 (2018) 407–416. doi: 10.1016/j.fuel.2018.02.135
-
[130]
F.M. Huang, T.Y. Jiang, X.C. Xu, et al., P.J. Catal. Sci. Technol. 10 (2020) 7857–7864. doi: 10.1039/d0cy01601b
-
[131]
B. Zhang, A. Studer, Chem. Soc. Rev. 44 (2015) 3505–3521. doi: 10.1039/C5CS00083A
-
[132]
T. Song, P. Ren, Z. Ma, J. Xiaoc, Y. Yang, ACS Sustain. Chem. Eng. 8 (2020) 267–277. doi: 10.1021/acssuschemeng.9b05298
-
[133]
G. Ji, Y. Duan, S. Zhang, Y. Yang, Catal. Today 330 (2019) 101–108. doi: 10.1016/j.cattod.2018.04.036
-
[134]
J.A. Pereira, A.M. Pessoa, et al., Eur. J. Med. Chem. 97 (2015) 664–672. doi: 10.1016/j.ejmech.2014.06.058
-
[135]
S. Shee, D. Panja, S. Kundu, J. Org. Chem. 85 (2020) 2775–2784. doi: 10.1021/acs.joc.9b03104
-
[136]
M. Godino-Ojer, R. Blazquez-García, E. Perez-Mayoral, et al., Catal. Today 354 (2020) 90–99. doi: 10.1016/j.cattod.2019.06.043
-
[137]
M.H. Beyzavi, C.J. Stephenson, et al., Front. Energy Res. 2 (2015) 128097.
-
[138]
D. Polidoro, A. Perosa, E. Rodriquez-Castellon, et al., ACS Sustain. Chem. Eng. 10 (2022) 13835–13848. doi: 10.1021/acssuschemeng.2c04443
-
[139]
P. Salisaeng, P. Arnnok, N. Patdhanagul, R. Burakham, J. Agric. Food. Chem. 64 (2016) 2145–2152. doi: 10.1021/acs.jafc.5b05437
-
[140]
C.S. Cao, S.M. Xia, Z.J. Song, et al., Angew. Chem. Int. Ed. 59 (2020) 8586–8593. doi: 10.1002/anie.201914596
-
[141]
M. Chen, Q. Wu, C. Lin, et al., ACS Appl. Mater. Interfaces 12 (2020) 40236–40247. doi: 10.1021/acsami.0c08001
-
[142]
M.A. Patel, F. Luo, M.R. Khoshi, et al., ACS Nano 10 (2016) 2305–2315. doi: 10.1021/acsnano.5b07054
-
[143]
H. Kim, J.C. Jung, P. Kim, K.Y. Lee, S.H. Yeom, I.K. Song, Preparation of heteropolyacid/carbon catalyst and its application to methacrolein oxidation, in: E.M. Gaigneaux, M. Devillers, D.E. De Vos, et al. (Eds. ), Studies in Surface Science and Catalysis, Elsevier Inc. 2006, pp. 801–808.
-
[1]
-
-
[1]
Jia-Cheng Hou , Hong-Tao Ji , Yu-Han Lu , Jia-Sheng Wang , Yao-Dan Xu , Yan-Yan Zeng , Wei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514
-
[2]
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
-
[3]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[4]
Peiwen Liu , Fang Zhao , Jing Zhang , Yunpeng Bai , Jinxing Ye , Bo Bao , Xinggui Zhou , Li Zhang , Changlu Zhou , Xinhai Yu , Peng Zuo , Jianye Xia , Lian Cen , Yangyang Yang , Guoyue Shi , Lin Xu , Weiping Zhu , Yufang Xu , Xuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020
-
[5]
Mingxin Song , Lijing Xie , Fangyuan Su , Zonglin Yi , Quangui Guo , Cheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266
-
[6]
Yingxiao Zong , Yangfei Wei , Xiaoqing Liu , Junke Wang , Huanfang Guo , Junli Wang , Zhuangzhi Shi , Tao Tu , Cheng Yang , Chongyang Wang , Leyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743
-
[7]
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
-
[8]
Xiumei LI , Yanju HUANG , Bo LIU , Yaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109
-
[9]
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
-
[10]
Xiao Xiao , Biao Chen , Jia-Wei Li , Jun-Bo Zheng , Xu Wang , Hang Zhao , Fen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280
-
[11]
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
-
[12]
Ruonan Guo , Heng Zhang , Changsheng Guo , Ningqing Lv , Beidou Xi , Jian Xu . Degradation of neonicotinoids with different molecular structures in heterogeneous peroxymonosulfate activation system through different oxidation pathways. Chinese Chemical Letters, 2024, 35(9): 109413-. doi: 10.1016/j.cclet.2023.109413
-
[13]
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
-
[14]
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
-
[15]
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
-
[16]
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
-
[17]
Huimin Luan , Qinming Wu , Jianping Wu , Xiangju Meng , Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252
-
[18]
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
-
[19]
Weichen Zhu , Wei Zuo , Pu Wang , Wei Zhan , Jun Zhang , Lipin Li , Yu Tian , Hong Qi , Rui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341
-
[20]
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(273)
- HTML views(5)