Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ)
-
* Corresponding authors.
E-mail addresses: wuqy@ihep.ac.cn (Q. Wu), shiwq@ihep.ac.cn (W. Shi).
Citation: Lingling Su, Qunyan Wu, Congzhi Wang, Jianhui Lan, Weiqun Shi. Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ)[J]. Chinese Chemical Letters, ;2024, 35(8): 109402. doi: 10.1016/j.cclet.2023.109402
R.C. Ewing, Nat. Mater. 14 (2015) 252–257.
doi: 10.1038/nmat4226
J. Veliscek-Carolan, J. Hazard. 318 (2016) 266–281.
doi: 10.1016/j.jhazmat.2016.07.027
M. Salvatores, G. Palmiotti, Prog. Part. Nucl. Phys. 66 (2011) 144–166.
doi: 10.1016/j.ppnp.2010.10.001
A. Salvatores, Nucl. Eng. Des. 235 (2005) 805–816.
doi: 10.1016/j.nucengdes.2004.10.009
J.N. Mathur, M.S. Murali, K.L. Nash, Solvent Extr. Ion. Exch. 19 (2001) 357–390.
doi: 10.1081/SEI-100103276
K.L. Nash, Handbook on the Physics and Chemistry of Rare Earths, Elsevier, 1994, pp. 197–238.
A. Khayambashi, L. Chen, X. Dong, et al., Chin. Chem. Lett. 33 (2022) 3429–3434.
doi: 10.1016/j.cclet.2022.02.011
L. Xu, N. Pu, G. Y, et al., Inorg. Chem. Front. 7 (2020) 1726–1740.
doi: 10.1039/d0qi00200c
X. Yang, S.H. Wang, L. Xu, et al., Inorg. Chem. Front. 9 (2022) 4671–4684.
doi: 10.1039/d2qi01153k
T.Y. Xiu, S.M. Zhang, P. Ren, et al., Chin. Chem. Lett. 34 (2023) 108440.
doi: 10.1016/j.cclet.2023.108440
D.S. Tian, Y.Y. Liu, Y. Kang, et al., ACS Cent. Sci. 9 (2023) 1642–1649.
doi: 10.1021/acscentsci.3c00504
R.G. Pearson, J. Am. Chem. Soc. 85 (1963) 3533–3539.
doi: 10.1021/ja00905a001
A. Leoncini, J. Huskens, W. Verboom, Chem. Soc. Rev. 46 (2017) 7229–7273.
doi: 10.1039/C7CS00574A
Z.R. Ye, Q.Y. Wu, C.Z. Wang, et al., Inorg. Chem. 60 (2021) 16409–16419.
doi: 10.1021/acs.inorgchem.1c02256
A. Geist, P.J. Panak, Solvent Extr. Ion. Exch. 39 (2021) 128–151.
doi: 10.1080/07366299.2020.1831235
C. Madic, M.J. Hudson, Report EUR 18038EN. Nuclear Science and Technology, 1998.
Z. Kolarik, U. Müllich, F. Gassner, Solvent Extr. Ion. Exch. 17 (1999) 23–32.
doi: 10.1080/07360299908934598
F.W. Lewis, L.M. Harwood, M.J. Hudson, et al., J. Am. Chem. Soc. 133 (2011) 13093–13102.
doi: 10.1021/ja203378m
M.G.B. Drew, M.J. Hudson, P.B. Iveson, et al., Dalton Trans. (1999) 2433–2440.
A. Bremer, C.M. Ruff, D. Girnt, et al., Inorg. Chem. 51 (2012) 5199–5207.
doi: 10.1021/ic3000526
D.P. Su, Y. Liu, S.M. Li, et al., Eur. J. Inorg. Chem. (2017) 651–658 2017.
Y. Liu, X.Y. Yang, S.D. Ding, et al., Inorg. Chem. 57 (2018) 5782–5790.
doi: 10.1021/acs.inorgchem.8b00074
J.R. Wang, D.P. Su, D.Q. Wang, et al., Inorg. Chem. 54 (2015) 10648–10655.
doi: 10.1021/acs.inorgchem.5b01452
X.H. Kong, Q.Y. Wu, C.Z. Wang, et al., J. Phys. Chem. A 122 (2018) 4499–4507.
doi: 10.1021/acs.jpca.8b00177
C. Kiefer, A.T. Wagner, B.B. Beele, et al., Inorg. Chem. 54 (2015) 7301–7308.
doi: 10.1021/acs.inorgchem.5b00803
E. Macerata, E. Mossini, S. Scaravaggi, et al., J. Am. Chem. Soc. 138 (2016) 7232–7235.
doi: 10.1021/jacs.6b03106
A.C. Edwards, P. Mocilac, A. Geist, et al., Chem. Commun. 53 (2017) 5001–5004.
doi: 10.1039/C7CC01855J
A. Ossola, E. Macerata, E. Mossini, et al., J. Radioanal. Nucl. Ch. 318 (2018) 2013–2022.
doi: 10.1007/s10967-018-6253-y
P. Weßling, M. Maag, G. Baruth, et al., Inorg. Chem. 61 (2022) 17719–17729.
doi: 10.1021/acs.inorgchem.2c02871
F. Galluccio, E. Macerata, P. Weßling, et al., Inorg. Chem. 61 (2022) 18400–18411.
doi: 10.1021/acs.inorgchem.2c02332
L.K. Liu, S.B. Xie, H.B. Lv, et al., Chin. Chem. Lett. 33 (2022) 3439–3443.
doi: 10.1016/j.cclet.2022.04.001
Y.A. Ustynyuk, M.Y. Alyapyshev, V.A. Babain, et al., Russ. Chem. Rev. 85 (2016) 917–942.
doi: 10.1070/RCR4588
X. Zhang, S.L. Adelman, B.T. Arko, et al., Inorg. Chem. 61 (2022) 11556–11570.
doi: 10.1021/acs.inorgchem.2c00534
C. Ebenezer, R. Vijay Solomon, Inorg. Chem. Front. 8 (2021) 3012–3024.
doi: 10.1039/d1qi00097g
R.C. Chapleski Jr., A.S. Ivanov, K.A. Peterson, et al., Phys. Chem. Chem. Phys. 23 (2021) 19558–19570.
doi: 10.1039/d1cp02466c
J.P. Yu, K. Liu, Q.Y. Wu, et al., Chinese J. Chem. 39 (2021) 2125–2131.
doi: 10.1002/cjoc.202100149
G.J.P. Deblonde, M.P. Kelley, J. Su, et al., Angew. Chem. Int. Ed. 57 (2018) 4521–4526.
doi: 10.1002/anie.201709183
J.N. Cross, J. Su, E.R. Batista, et al., J. Am. Chem. Soc. 139 (2017) 8667–8677.
doi: 10.1021/jacs.7b03755
J. Su, E.R. Batista, K.S. Boland, et al., J. Am. Chem. Soc. 140 (2018) 17977–17984.
doi: 10.1021/jacs.8b09436
Q.Y. Wu, Y.T. Song, L. Ji, et al., Phys. Chem. Chem. Phys. 19 (2017) 26969–26979.
doi: 10.1039/C7CP04625A
C. Wang, Q.Y. Wu, X.H. Kong, et al., Inorg. Chem. 58 (2019) 10047–10056.
doi: 10.1021/acs.inorgchem.9b01200
X.H. Kong, Q.Y. Wu, J.H. Lan, et al., Inorg. Chem. 57 (2018) 14810–14820.
doi: 10.1021/acs.inorgchem.8b02550
X.P. Lei, Q.Y. Wu, C.Z. Wang, et al., Dalton Trans. 51 (2022) 16659–16667.
doi: 10.1039/d2dt02474h
X.P. Lei, Q.Y. Wu, C.Z. Wang, et al., Inorg. Chem. 62 (2023) 2705–2714.
doi: 10.1021/acs.inorgchem.2c03823
Y.M. Chen, C.Z. Wang, Q.Y. Wu, et al., Inorg. Chem. 59 (2020) 3221–3231.
doi: 10.1021/acs.inorgchem.9b03604
Z.R. Ye, Q.Y. Wu, C.Z. Wang, et al., Inorg. Chem. 61 (2022) 6110–6119.
doi: 10.1021/acs.inorgchem.2c00232
Y. Zou, J.H. Lan, L.Y. Yuan, et al., Inorg. Chem. 62 (2023) 4581–4589.
doi: 10.1021/acs.inorgchem.2c04476
Y. Zou, J.H. Lan, L.Y. Yuan, et al., Inorg. Chem. 61 (2022) 15423–15431.
doi: 10.1021/acs.inorgchem.2c01952
A. Bhattacharyya, T. Gadly, A.S. Kanekar, et al., Inorg. Chem. 57 (2018) 5096–5107.
doi: 10.1021/acs.inorgchem.8b00142
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
doi: 10.1103/PhysRevB.37.785
M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 16, Revision B, Gaussian, Inc., Wallingford, CT, 2016.
M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 90 (1989) 1730–1734.
doi: 10.1063/1.456066
W. Küchle, M. Dolg, H. Stoll, J. Chem. Phys. 100 (1994) 7535–7542.
doi: 10.1063/1.466847
X.Y. Cao, M. Dolg, J. Mol. Struct. 581 (2002) 139–147.
doi: 10.1016/S0166-1280(01)00751-5
X.Y. Cao, M. Dolg, H. Stoll, J. Chem. Phys. 118 (2002) 487–496.
X.Y. Cao, M. Dolg, J. Mol. Struct. 673 (2004) 203–209.
doi: 10.1016/j.theochem.2003.12.015
G.A. Shamov, G. Schreckenbach, R.L. Martin, et al., Inorg. Chem. 47 (2008) 1465–1475.
doi: 10.1021/ic7015403
G.A. Shamov, G. Schreckenbach, J. Phys. Chem. A 109 (2005) 10961–10974.
doi: 10.1021/jp053522f
J. Narbutt, A. Wodyński, M. Pecul, Dalton Trans. 44 (2015) 2657–2666.
doi: 10.1039/C4DT02657H
A. Zaiter, B. Amine, Y. Bouzidi, et al., Inorg. Chem. 53 (2014) 4687–4697.
doi: 10.1021/ic500361b
C. Clavaguéra-Sarrio, V. Vallet, D. Maynau, et al., J. Chem. Phys. 121 (2004) 5312–5321.
doi: 10.1063/1.1784412
M. Cossi, N. Rega, G. Scalmani, et al., J. Comput. Chem. 24 (2003) 669–681.
doi: 10.1002/jcc.10189
V. Barone, M. Cossi, J. Phys. Chem. A 102 (1998) 1995–2001.
doi: 10.1021/jp9716997
J. Ho, A. Klamt, M.L. Coote, J. Phys. Chem. A 114 (2010) 13442–13444.
doi: 10.1021/jp107136j
T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580–592.
doi: 10.1002/jcc.22885
I. Mayer, Chem. Phys. Lett. 97 (1983) 270–274.
doi: 10.1016/0009-2614(83)80005-0
A.E. Reed, F. Weinhold, J. Chem. Phys. 78 (1983) 4066–4073.
doi: 10.1063/1.445134
A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735–746.
doi: 10.1063/1.449486
R.F.W. Bader, C.F. Matta, Inorg. Chem. 40 (2001) 5603–5611.
doi: 10.1021/ic010165o
E. Espinosa, I. Alkorta, J. Elguero, et al., J. Chem. Phys. 117 (2002) 5529–5542.
doi: 10.1063/1.1501133
T. Ziegler, A. Rauk, Theor. Chem. Acc. 46 (1977) 1–10.
doi: 10.1007/BF02401406
G. te Velde, F.M. Bickelhaupt, E.J. Baerends, et al., J. Comput. Chem. 22 (2001) 931–967.
doi: 10.1002/jcc.1056
C. Fonseca Guerra, J.G. Snijders, G. te Velde, et al., Theor. Chem. Acc. 99 (1998) 391–403.
T.Z.E.J. Baerends, J. Autschbach, D. Bashford, et al., ADF2022, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, URL:
R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512–7516.
doi: 10.1021/ja00364a005
R. Shannon, Acta Crystallogr. A 32 (1976) 751–767.
doi: 10.1107/S0567739476001551
M.P. Jensen, A.H. Bond, J. Am. Chem. Soc. 124 (2002) 9870–9877.
doi: 10.1021/ja0178620
D. Cremer, E. Kraka, J. Am. Chem. Soc. 107 (1985) 3811–3819.
doi: 10.1021/ja00299a010
W.H. Tu, S.J. Zeng, Y. Bai, et al., Ind. Chem. Mater. 1 (2023) 262–270.
doi: 10.1039/d2im00041e
P. Thakur, J.L. Conca, G.R. Choppin, J. Solution Chem. 41 (2012) 599–615.
doi: 10.1007/s10953-012-9826-3
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
A-Yang Wang , Sheng-Hua Zhou , Mao-Yin Ran , Xin-Tao Wu , Hua Lin , Qi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377
Jiajia Lv , Jie Gao , Hongyu Li , Zeli Yuan , Nan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Linjie Ju , Zhongxi Huang , Qian Shen , Chan Fu , Shuanghe Li , Wenjie Duan , Chenfeng Xu , Weizhen An , Zhiqiang Zhai , Jifu Wei , Changmin Yu , Guoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450
Huangjie Lu , Yingzhe Du , Peng Lin , Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
Tianze Wang , Junyi Ren , Dongxiang Zhang , Huan Wang , Jianjun Du , Xin-Dong Jiang , Guiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867