Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ)
-
* Corresponding authors.
E-mail addresses: wuqy@ihep.ac.cn (Q. Wu), shiwq@ihep.ac.cn (W. Shi).
Citation:
Lingling Su, Qunyan Wu, Congzhi Wang, Jianhui Lan, Weiqun Shi. Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ)[J]. Chinese Chemical Letters,
;2024, 35(8): 109402.
doi:
10.1016/j.cclet.2023.109402
R.C. Ewing, Nat. Mater. 14 (2015) 252–257.
doi: 10.1038/nmat4226
J. Veliscek-Carolan, J. Hazard. 318 (2016) 266–281.
doi: 10.1016/j.jhazmat.2016.07.027
M. Salvatores, G. Palmiotti, Prog. Part. Nucl. Phys. 66 (2011) 144–166.
doi: 10.1016/j.ppnp.2010.10.001
A. Salvatores, Nucl. Eng. Des. 235 (2005) 805–816.
doi: 10.1016/j.nucengdes.2004.10.009
J.N. Mathur, M.S. Murali, K.L. Nash, Solvent Extr. Ion. Exch. 19 (2001) 357–390.
doi: 10.1081/SEI-100103276
K.L. Nash, Handbook on the Physics and Chemistry of Rare Earths, Elsevier, 1994, pp. 197–238.
A. Khayambashi, L. Chen, X. Dong, et al., Chin. Chem. Lett. 33 (2022) 3429–3434.
doi: 10.1016/j.cclet.2022.02.011
L. Xu, N. Pu, G. Y, et al., Inorg. Chem. Front. 7 (2020) 1726–1740.
doi: 10.1039/d0qi00200c
X. Yang, S.H. Wang, L. Xu, et al., Inorg. Chem. Front. 9 (2022) 4671–4684.
doi: 10.1039/d2qi01153k
T.Y. Xiu, S.M. Zhang, P. Ren, et al., Chin. Chem. Lett. 34 (2023) 108440.
doi: 10.1016/j.cclet.2023.108440
D.S. Tian, Y.Y. Liu, Y. Kang, et al., ACS Cent. Sci. 9 (2023) 1642–1649.
doi: 10.1021/acscentsci.3c00504
R.G. Pearson, J. Am. Chem. Soc. 85 (1963) 3533–3539.
doi: 10.1021/ja00905a001
A. Leoncini, J. Huskens, W. Verboom, Chem. Soc. Rev. 46 (2017) 7229–7273.
doi: 10.1039/C7CS00574A
Z.R. Ye, Q.Y. Wu, C.Z. Wang, et al., Inorg. Chem. 60 (2021) 16409–16419.
doi: 10.1021/acs.inorgchem.1c02256
A. Geist, P.J. Panak, Solvent Extr. Ion. Exch. 39 (2021) 128–151.
doi: 10.1080/07366299.2020.1831235
C. Madic, M.J. Hudson, Report EUR 18038EN. Nuclear Science and Technology, 1998.
Z. Kolarik, U. Müllich, F. Gassner, Solvent Extr. Ion. Exch. 17 (1999) 23–32.
doi: 10.1080/07360299908934598
F.W. Lewis, L.M. Harwood, M.J. Hudson, et al., J. Am. Chem. Soc. 133 (2011) 13093–13102.
doi: 10.1021/ja203378m
M.G.B. Drew, M.J. Hudson, P.B. Iveson, et al., Dalton Trans. (1999) 2433–2440.
A. Bremer, C.M. Ruff, D. Girnt, et al., Inorg. Chem. 51 (2012) 5199–5207.
doi: 10.1021/ic3000526
D.P. Su, Y. Liu, S.M. Li, et al., Eur. J. Inorg. Chem. (2017) 651–658 2017.
Y. Liu, X.Y. Yang, S.D. Ding, et al., Inorg. Chem. 57 (2018) 5782–5790.
doi: 10.1021/acs.inorgchem.8b00074
J.R. Wang, D.P. Su, D.Q. Wang, et al., Inorg. Chem. 54 (2015) 10648–10655.
doi: 10.1021/acs.inorgchem.5b01452
X.H. Kong, Q.Y. Wu, C.Z. Wang, et al., J. Phys. Chem. A 122 (2018) 4499–4507.
doi: 10.1021/acs.jpca.8b00177
C. Kiefer, A.T. Wagner, B.B. Beele, et al., Inorg. Chem. 54 (2015) 7301–7308.
doi: 10.1021/acs.inorgchem.5b00803
E. Macerata, E. Mossini, S. Scaravaggi, et al., J. Am. Chem. Soc. 138 (2016) 7232–7235.
doi: 10.1021/jacs.6b03106
A.C. Edwards, P. Mocilac, A. Geist, et al., Chem. Commun. 53 (2017) 5001–5004.
doi: 10.1039/C7CC01855J
A. Ossola, E. Macerata, E. Mossini, et al., J. Radioanal. Nucl. Ch. 318 (2018) 2013–2022.
doi: 10.1007/s10967-018-6253-y
P. Weßling, M. Maag, G. Baruth, et al., Inorg. Chem. 61 (2022) 17719–17729.
doi: 10.1021/acs.inorgchem.2c02871
F. Galluccio, E. Macerata, P. Weßling, et al., Inorg. Chem. 61 (2022) 18400–18411.
doi: 10.1021/acs.inorgchem.2c02332
L.K. Liu, S.B. Xie, H.B. Lv, et al., Chin. Chem. Lett. 33 (2022) 3439–3443.
doi: 10.1016/j.cclet.2022.04.001
Y.A. Ustynyuk, M.Y. Alyapyshev, V.A. Babain, et al., Russ. Chem. Rev. 85 (2016) 917–942.
doi: 10.1070/RCR4588
X. Zhang, S.L. Adelman, B.T. Arko, et al., Inorg. Chem. 61 (2022) 11556–11570.
doi: 10.1021/acs.inorgchem.2c00534
C. Ebenezer, R. Vijay Solomon, Inorg. Chem. Front. 8 (2021) 3012–3024.
doi: 10.1039/d1qi00097g
R.C. Chapleski Jr., A.S. Ivanov, K.A. Peterson, et al., Phys. Chem. Chem. Phys. 23 (2021) 19558–19570.
doi: 10.1039/d1cp02466c
J.P. Yu, K. Liu, Q.Y. Wu, et al., Chinese J. Chem. 39 (2021) 2125–2131.
doi: 10.1002/cjoc.202100149
G.J.P. Deblonde, M.P. Kelley, J. Su, et al., Angew. Chem. Int. Ed. 57 (2018) 4521–4526.
doi: 10.1002/anie.201709183
J.N. Cross, J. Su, E.R. Batista, et al., J. Am. Chem. Soc. 139 (2017) 8667–8677.
doi: 10.1021/jacs.7b03755
J. Su, E.R. Batista, K.S. Boland, et al., J. Am. Chem. Soc. 140 (2018) 17977–17984.
doi: 10.1021/jacs.8b09436
Q.Y. Wu, Y.T. Song, L. Ji, et al., Phys. Chem. Chem. Phys. 19 (2017) 26969–26979.
doi: 10.1039/C7CP04625A
C. Wang, Q.Y. Wu, X.H. Kong, et al., Inorg. Chem. 58 (2019) 10047–10056.
doi: 10.1021/acs.inorgchem.9b01200
X.H. Kong, Q.Y. Wu, J.H. Lan, et al., Inorg. Chem. 57 (2018) 14810–14820.
doi: 10.1021/acs.inorgchem.8b02550
X.P. Lei, Q.Y. Wu, C.Z. Wang, et al., Dalton Trans. 51 (2022) 16659–16667.
doi: 10.1039/d2dt02474h
X.P. Lei, Q.Y. Wu, C.Z. Wang, et al., Inorg. Chem. 62 (2023) 2705–2714.
doi: 10.1021/acs.inorgchem.2c03823
Y.M. Chen, C.Z. Wang, Q.Y. Wu, et al., Inorg. Chem. 59 (2020) 3221–3231.
doi: 10.1021/acs.inorgchem.9b03604
Z.R. Ye, Q.Y. Wu, C.Z. Wang, et al., Inorg. Chem. 61 (2022) 6110–6119.
doi: 10.1021/acs.inorgchem.2c00232
Y. Zou, J.H. Lan, L.Y. Yuan, et al., Inorg. Chem. 62 (2023) 4581–4589.
doi: 10.1021/acs.inorgchem.2c04476
Y. Zou, J.H. Lan, L.Y. Yuan, et al., Inorg. Chem. 61 (2022) 15423–15431.
doi: 10.1021/acs.inorgchem.2c01952
A. Bhattacharyya, T. Gadly, A.S. Kanekar, et al., Inorg. Chem. 57 (2018) 5096–5107.
doi: 10.1021/acs.inorgchem.8b00142
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
doi: 10.1103/PhysRevB.37.785
M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 16, Revision B, Gaussian, Inc., Wallingford, CT, 2016.
M. Dolg, H. Stoll, H. Preuss, J. Chem. Phys. 90 (1989) 1730–1734.
doi: 10.1063/1.456066
W. Küchle, M. Dolg, H. Stoll, J. Chem. Phys. 100 (1994) 7535–7542.
doi: 10.1063/1.466847
X.Y. Cao, M. Dolg, J. Mol. Struct. 581 (2002) 139–147.
doi: 10.1016/S0166-1280(01)00751-5
X.Y. Cao, M. Dolg, H. Stoll, J. Chem. Phys. 118 (2002) 487–496.
X.Y. Cao, M. Dolg, J. Mol. Struct. 673 (2004) 203–209.
doi: 10.1016/j.theochem.2003.12.015
G.A. Shamov, G. Schreckenbach, R.L. Martin, et al., Inorg. Chem. 47 (2008) 1465–1475.
doi: 10.1021/ic7015403
G.A. Shamov, G. Schreckenbach, J. Phys. Chem. A 109 (2005) 10961–10974.
doi: 10.1021/jp053522f
J. Narbutt, A. Wodyński, M. Pecul, Dalton Trans. 44 (2015) 2657–2666.
doi: 10.1039/C4DT02657H
A. Zaiter, B. Amine, Y. Bouzidi, et al., Inorg. Chem. 53 (2014) 4687–4697.
doi: 10.1021/ic500361b
C. Clavaguéra-Sarrio, V. Vallet, D. Maynau, et al., J. Chem. Phys. 121 (2004) 5312–5321.
doi: 10.1063/1.1784412
M. Cossi, N. Rega, G. Scalmani, et al., J. Comput. Chem. 24 (2003) 669–681.
doi: 10.1002/jcc.10189
V. Barone, M. Cossi, J. Phys. Chem. A 102 (1998) 1995–2001.
doi: 10.1021/jp9716997
J. Ho, A. Klamt, M.L. Coote, J. Phys. Chem. A 114 (2010) 13442–13444.
doi: 10.1021/jp107136j
T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580–592.
doi: 10.1002/jcc.22885
I. Mayer, Chem. Phys. Lett. 97 (1983) 270–274.
doi: 10.1016/0009-2614(83)80005-0
A.E. Reed, F. Weinhold, J. Chem. Phys. 78 (1983) 4066–4073.
doi: 10.1063/1.445134
A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735–746.
doi: 10.1063/1.449486
R.F.W. Bader, C.F. Matta, Inorg. Chem. 40 (2001) 5603–5611.
doi: 10.1021/ic010165o
E. Espinosa, I. Alkorta, J. Elguero, et al., J. Chem. Phys. 117 (2002) 5529–5542.
doi: 10.1063/1.1501133
T. Ziegler, A. Rauk, Theor. Chem. Acc. 46 (1977) 1–10.
doi: 10.1007/BF02401406
G. te Velde, F.M. Bickelhaupt, E.J. Baerends, et al., J. Comput. Chem. 22 (2001) 931–967.
doi: 10.1002/jcc.1056
C. Fonseca Guerra, J.G. Snijders, G. te Velde, et al., Theor. Chem. Acc. 99 (1998) 391–403.
T.Z.E.J. Baerends, J. Autschbach, D. Bashford, et al., ADF2022, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, URL:
R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512–7516.
doi: 10.1021/ja00364a005
R. Shannon, Acta Crystallogr. A 32 (1976) 751–767.
doi: 10.1107/S0567739476001551
M.P. Jensen, A.H. Bond, J. Am. Chem. Soc. 124 (2002) 9870–9877.
doi: 10.1021/ja0178620
D. Cremer, E. Kraka, J. Am. Chem. Soc. 107 (1985) 3811–3819.
doi: 10.1021/ja00299a010
W.H. Tu, S.J. Zeng, Y. Bai, et al., Ind. Chem. Mater. 1 (2023) 262–270.
doi: 10.1039/d2im00041e
P. Thakur, J.L. Conca, G.R. Choppin, J. Solution Chem. 41 (2012) 599–615.
doi: 10.1007/s10953-012-9826-3
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Chaozheng He , Menghui Xi , Chenxu Zhao , Ran Wang , Ling Fu , Jinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Dongdong YANG , Jianhua XUE , Yuanyu YANG , Meixia WU , Yujia BAI , Zongxuan WANG , Qi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
Qiang Wu , Baofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089