Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst
-
* Corresponding authors.
E-mail addresses: lly0340@163.com (L. Luo), zhg20052008@163.com (G. Zhang), jbj@hlju.edu.cn (B. Jiang).
Citation: Haojie Song, Laiyu Luo, Siyu Wang, Guo Zhang, Baojiang Jiang. Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst[J]. Chinese Chemical Letters, ;2024, 35(10): 109347. doi: 10.1016/j.cclet.2023.109347
M. Farghali, A.I. Osman, I.M.A. Mohamed, et al., Environ. Chem. Lett. 21 (2023) 2003–2039.
doi: 10.1007/s10311-023-01591-5
L. Zhou, H. Zhang, H. Sun, et al., Catal. Sci. Technol. 6 (2016) 7002–7023.
doi: 10.1039/C6CY01195K
C. Zhang, Y.L. Xie., H.X. Zhang, Y.J. Gu, X.G. Zhang, Energy 262 (2023) 125453.
doi: 10.1016/j.energy.2022.125453
N. Yan, C. Zhao, S. You, Y. Zhang, W. Li, Chin. Chem. Lett. 31 (2020) 643–653.
doi: 10.1016/j.cclet.2019.08.022
L. Zhan, S. Li, Y. Li, et al., Adv. Energy Mater. 12 (2022) 2201076.
doi: 10.1002/aenm.202201076
K. Wang, P. Yang, R. Guo, X. Yao, W. Yang, Chin. Chem. Lett. 30 (2019) 2013–2016.
doi: 10.1016/j.cclet.2019.04.005
M. Chang, Z. Hou, M. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 12971–12979.
doi: 10.1002/anie.202101924
C. Aydogan, G. Yilmaz, A. Shegiwal, D.M. Haddleton, Y. Yagci, Angew. Chem., Int. Ed. 61 (2022) e202117377.
doi: 10.1002/anie.202117377
U. Raucci, H. Weir, C. Bannwarth, D.M. Sanchez, T.J. Martinez, Nat. Commun. 13 (2022) 2091.
doi: 10.1038/s41467-022-29662-1
W. Wang, Y. Tao, J. Fan, et al., Adv. Funct. Mater. 32 (2022) 2201357.
doi: 10.1002/adfm.202201357
X.P. Li, L.R. Zheng, S.J. Liu, et al., Chin. Chem. Lett. 33 (2022) 4761–4765.
doi: 10.1016/j.cclet.2021.12.095
Q. Li, J.N. Chang, Z. Wang, et al., J. Am. Chem. Soc. 145 (2023) 23167–23175.
doi: 10.1021/jacs.3c07471
L. Ran, Z. Li, B. Ran, et al., J. Am. Chem. Soc. 144 (2022) 17097–17109.
doi: 10.1021/jacs.2c06920
L. Xu, L. Li, L. Yu, J.C. Yu, Chem. Eng. J. 431 (2022) 134241.
doi: 10.1016/j.cej.2021.134241
T. Xia, Y. Lin, W. Li, M. Ju, Chin. Chem. Lett. 32 (2021) 2975–2984.
doi: 10.1016/j.cclet.2021.02.058
A. Vijeta, C. Casadevall, E. Reisner, Angew. Chem. Int. Ed. 61 (2022) e202203176.
doi: 10.1002/anie.202203176
T.Y. Yu, Q. Niu, Y. Chen, et al., J. Am. Chem. Soc. 145 (2023) 8860–8870.
doi: 10.1021/jacs.2c12313
Y. Jiang, Z. Xiong, J. Huang, et al., Chin. Chem. Lett. 33 (2022) 415–423.
doi: 10.1016/j.cclet.2021.06.058
Z. Liang, H. Wang, K. Zhang, et al., Chem. Eng. J. 428 (2022) 131349.
doi: 10.1016/j.cej.2021.131349
A. Fujishima, K. Honda, Nature 238 (1972) 37–38.
doi: 10.1038/238037a0
F. Wang, S.X. Min, Chin. Chem. Lett. 18 (2007) 1273–1277.
doi: 10.1016/j.cclet.2007.08.010
Y. Zhang, J. Zhao, H. Wang, et al., Nat. Commun. 13 (2022) 58.
doi: 10.1038/s41467-021-27698-3
S. Huang, B.F. Zheng, Z.Y. Tang, et al., Chem. Eng. J. 422 (2021) 130086.
doi: 10.1016/j.cej.2021.130086
H. Wang, J. Liu, X. Xiao, et al., Chin. Chem. Lett. 34 (2023) 107125.
doi: 10.1016/j.cclet.2022.01.018
L. Hao, H. Huang, Y. Zhang, T. Ma, Adv. Funct. Mater. 31 (2021) 2100919.
doi: 10.1002/adfm.202100919
N. Zhang, H. Zuo, C. Xu, et al., Chin. Chem. Lett. 31 (2020) 337–340.
doi: 10.1016/j.cclet.2019.06.008
H. Zhang, T. Itoi, T. Konishi, Y. Izumi, Angew. Chem. Int. Ed. 60 (2021) 9045–9054.
doi: 10.1002/anie.202016346
S. Zhang, Z. Zhang, B. Li, et al., J. Colloid Interface Sci. 586 (2021) 708–718.
doi: 10.1016/j.jcis.2020.10.140
K. Saravanakumar, C.M. Park, Chem. Eng. J. 423 (2021) 130076.
doi: 10.1016/j.cej.2021.130076
I. Mahboob, I. Shafiq, S. Shafique, et al., Chem. Eng. J. 441 (2022) 136063.
doi: 10.1016/j.cej.2022.136063
L. Liu, T. Hu, K. Dai, J. Zhang, C. Liang, Chin. J. Catal. 42 (2021) 46–55.
doi: 10.1117/12.2604945
Y. Zhang, Y. Zhao, Z. Xiong, et al., Appl. Catal. B 282 (2021) 119534.
doi: 10.1016/j.apcatb.2020.119534
H. Nie, K. Wei, Y. Li, et al., Chin. Chem. Lett. 32 (2021) 2283–2286.
doi: 10.1016/j.cclet.2021.01.041
Y. Li, Y. Liu, D. Xing, et al., Appl. Catal. B 285 (2021) 119855.
doi: 10.1016/j.apcatb.2020.119855
D. Dai, X. Liang, B. Zhang, et al., Adv. Sci. 9 (2022) 2105299.
doi: 10.1002/advs.202105299
W. Zhong, X. Wu, Y. Liu, et al., Appl. Catal. B 280 (2021) 119455.
doi: 10.1016/j.apcatb.2020.119455
M. Wang, J. Cheng, X. Wang, et al., Chin. J. Catal. 42 (2021) 37–45.
doi: 10.1016/S1872-2067(20)63633-6
J. Li, Z. Zhao, Z. Li, et al., Chin. Chem. Lett. 33 (2022) 3705–3708.
doi: 10.1016/j.cclet.2021.10.080
Y. Liu, W. Yang, Q. Chen, et al., J. Am. Chem. Soc. 144 (2022) 2705–2715.
doi: 10.1021/jacs.1c11745
C. Tang, M. Cheng, C. Lai, et al., Coord. Chem. Rev. 474 (2023) 214846.
doi: 10.1016/j.ccr.2022.214846
J. Xue, S. Ma, Y. Zhou, Z. Zhang, X. Liu, RSC Adv. 5 (2015) 58738–58745.
doi: 10.1039/C5RA09978A
Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51 (2012) 68–89.
doi: 10.1002/anie.201101182
S. Zhang, Y. Yang, Y. Zhai, et al., Chin. Chem. Lett. 34 (2023) 107652.
doi: 10.1016/j.cclet.2022.06.075
M. Yang, R. Lian, X. Zhang, et al., Nat. Commun. 13 (2022) 4900.
doi: 10.1038/s41467-022-32623-3
E.G. Gillan, Chem. Mater. 12 (2000) 3906–3912.
doi: 10.1021/cm000570y
Y. Wang, L. Liu, T. Ma, Y. Zhang, H. Huang, Adv. Funct. Mater. 31 (2021) 2102540.
doi: 10.1002/adfm.202102540
S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27 (2015) 2150–2176.
doi: 10.1002/adma.201500033
J. Zander, J. Timm, M. Weiss, R. Marschall, Adv. Energy Mater. 12 (2022) 2202403.
doi: 10.1002/aenm.202202403
Y. Xu, M. Fan, W. Yang, et al., Adv. Mater. 33 (2021) 2101455.
doi: 10.1002/adma.202101455
Z. Zhou, Y. Zhang, Y. Shen, S. Liu, Y. Zhang, Chem. Soc. Rev. 47 (2018) 2298–2321.
doi: 10.1039/c7cs00840f
B. Fan, L. Xing, Q. He, et al., Chem. Eng. J. 435 (2022) 135086.
doi: 10.1016/j.cej.2022.135086
C. Cheng, J. Shi, L. Mao, et al., J. Colloid Interface Sci. 637 (2023) 271–282.
doi: 10.1016/j.jcis.2023.01.098
Y. Li, D. Zhang, J. Fan, Q. Xiang, Chin. J. Catal. 42 (2021) 627–636.
doi: 10.1016/S1872-2067(20)63684-1
J. Kroeger, A. Jimenez-Solano, G. Savasci, et al., Adv. Funct. Mater. 31 (2021) 2102468.
doi: 10.1002/adfm.202102468
Y. Wang, F. He, L. Chen, et al., Chin. Chem. Lett. 31 (2020) 2668–2672.
doi: 10.1016/j.cclet.2020.08.003
B. Qu, P. Li, L. Bai, et al., Adv. Mater. 35 (2023) 2211575.
doi: 10.1002/adma.202211575
X. Zhang, X.R. Zhang, P. Yang, H.S. Chen, S.P. Jiang, Chem. Eng. J. 450 (2022) 138030.
doi: 10.1016/j.cej.2022.138030
Y. Gu, T. Xu, X. Chen, W. Chen, W. Lu, Chem. Eng. J. 427 (2022) 131973.
doi: 10.1016/j.cej.2021.131973
Y. Shiraishi, S. Kanazawa, Y. Sugano, et al., ACS Catal. 4 (2014) 774–780.
doi: 10.1021/cs401208c
Y. Shiraishi, Y. Kofuji, H. Sakamoto, et al., ACS Catal. 5 (2015) 3058–3066.
doi: 10.1021/acscatal.5b00408
X. Zong, L. Niu, W. Jiang, et al., Appl. Catal. B 291 (2021) 120099.
doi: 10.1016/j.apcatb.2021.120099
Y. Ma, F. Liu, Y. Liu, et al., Chem. Eng. J. 414 (2021) 128802.
doi: 10.1016/j.cej.2021.128802
M. Ran, P. Chen, J. Li, et al., Chin. Chem. Lett. 30 (2019) 875–880.
doi: 10.1016/j.cclet.2019.03.016
J. Xu, Y. Chen, M. Chen, J. Wang, L. Wang, Chem. Eng. J. 442 (2022) 136208.
doi: 10.1016/j.cej.2022.136208
L. Duan, G. Li, S. Zhang, et al., Chem. Eng. J. 411 (2021) 128551.
doi: 10.1016/j.cej.2021.128551
X. Yu, T. Fan, W. Chen, et al., Carbon 144 (2019) 649–658.
doi: 10.1016/j.carbon.2018.12.104
C. Xu, H. Liu, D. Wang, et al., Appl. Catal. B 334 (2023) 122835.
doi: 10.1016/j.apcatb.2023.122835
X. Wu, R. Zhong, X. Lv, et al., Appl. Catal. B 330 (2023) 122666.
doi: 10.1016/j.apcatb.2023.122666
Y. Zhang, S. Zong, C. Cheng, et al. Appl. Catal. B 233 (2018) 80–87.
doi: 10.1016/j.apcatb.2018.03.104
L. Lin, Z. Yu, X. Wang, Angew. Chem. Int. Ed. 58 (2019) 6164–6175.
doi: 10.1002/anie.201809897
S. Zhao, Y. Zhang, Y. Zhou, et al., Carbon 126 (2018) 247–256.
doi: 10.1016/j.carbon.2017.10.033
Y. Yu, W. Xu, J. Fang, et al., Appl. Catal. B 268 (2020) 118751.
doi: 10.1016/j.apcatb.2020.118751
X. Li, D. Chen, N. Li, et al., Appl. Catal. B 229 (2018) 155–162.
doi: 10.1016/j.apcatb.2018.02.028
S.U. Lee, Y.S. Jun, E.Z. Lee, et al., Carbon 95 (2015) 58–64.
doi: 10.5050/KSNVE.2015.25.1.058
B. Wu, L. Zhang, B. Jiang, et al., Angew. Chem. Int. Ed. 60 (2021) 4815–4822.
doi: 10.1002/anie.202013753
S. Guo, Z. Deng, M. Li, et al., Angew. Chem. Int. Ed. 55 (2016) 1830–1834.
doi: 10.1002/anie.201508505
C. Zhang, P. Ni, B. Wang, et al., Chin. Chem. Lett. 33 (2022) 757–761.
doi: 10.1016/j.cclet.2021.08.017
Y. Xiao, G. Tian, W. Li, et al., J. Am. Chem. Soc. 141 (2019) 2508–2515.
doi: 10.1021/jacs.8b12428
X.H. Jiang, F. Yu, D.S. Wu, et al., Chin. Chem. Lett. 32 (2021) 2782–2786.
doi: 10.1016/j.cclet.2021.01.011
Z. Wang, E. Almatrafi, H. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) e202202338.
doi: 10.1002/anie.202202338
F. Bi, Y. Su, Y. Zhang, et al., Appl. Catal. B 306 (2022) 121109.
doi: 10.1016/j.apcatb.2022.121109
H. Li, Q. Qing, L. Zheng, et al., Chin. Chem. Lett. 33 (2022) 3573–3576.
doi: 10.1016/j.cclet.2022.01.050
X. Wang, J. Meng, X. Zhang, et al., Adv. Funct. Mater. 31 (2021) 2010763.
doi: 10.1002/adfm.202010763
L. Chen, Y. Wang, S. Cheng, et al., Appl. Catal. B 303 (2022) 120932.
doi: 10.1016/j.apcatb.2021.120932
M.J. Bojdys, J.O. Mueller, M. Antonietti, A. Thomas, Chem. Eur. J. 14 (2008) 8177–8182.
doi: 10.1002/chem.200800190
Z. Chen, A. Savateev, S. Pronkin, et al., Adv. Mater. 29 (2017) 1700555.
doi: 10.1002/adma.201700555
D. Dontsova, S. Pronkin, M. Wehle, et al., Chem. Mater. 27 (2015) 5170–5179.
doi: 10.1021/acs.chemmater.5b00812
Z. Liao, C. Li, Z. Shu, et al., Int. J. Hydrogen Energy 46 (2021) 26318–26328.
doi: 10.1016/j.ijhydene.2021.05.138
E. Wirnhier, M. Doeblinger, D. Gunzelmann, et al., Chem. Eur. J. 17 (2011) 3213–3221.
doi: 10.1002/chem.201002462
M. Liu, C. Wei, H. Zhuzhang, et al., Angew. Chem., Int. Ed. 61 (2022) e202113389.
doi: 10.1002/anie.202113389
V.W.h. Lau, B.V. Lotsch, Adv. Energy Mater. 12 (2022) 2101078.
doi: 10.1002/aenm.202101078
F.K. Kessler, Y. Zheng, D. Schwarz, et al., Nat. Rev. Mater. 2 (2017) 17030.
doi: 10.1038/natrevmats.2017.30
J. Lieblg, Ann. Pharm. 10 (1834) 1–47.
doi: 10.1002/jlac.18340100102
J. Liebig, Justus Liebigs Ann. Chem. 53 (1845) 330–348.
doi: 10.1002/jlac.18450530303
J. Liebig, Justus Liebigs Ann. Chem. 95 (1855) 257–282.
doi: 10.1002/jlac.18550950302
L. Gmelin, Ann. Pharm. 15 (1835) 252–258.
doi: 10.1002/jlac.18350150306
E.C. Franklin, J. Am. Chem. Soc. 44 (1922) 486–509.
doi: 10.1021/ja01424a007
L. Pauling, J.H. Sturdivant, Proc. Natl. Acad. Sci. U. S. A. 23 (1937) 615–620.
doi: 10.1073/pnas.23.12.615
C.E. Redemann, H.J. Lucas, J. Am. Chem. Soc. 62 (1940) 842–846.
doi: 10.1021/ja01861a038
M.L. Cohen, Science 261 (1993) 307–308.
doi: 10.1126/science.261.5119.307
D.M. Teter, R.J. Hemley, Science 271 (1996) 53–55.
doi: 10.1126/science.271.5245.53
A.Y. Liu, R.M. Wentzcovitch, Phys. Rev. B 50 (1994) 10362–10365.
doi: 10.1103/PhysRevB.50.10362
E. Kroke, M. Schwarz, E. Horath-Bordon, et al., New J. Chem. 26 (2002) 508–512.
doi: 10.1039/b111062b
B. Jurgens, E. Irran, J. Senker, et al., J. Am. Chem. Soc. 125 (2003) 10288–10300.
doi: 10.1021/ja0357689
F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 45 (2006) 4467–4471.
doi: 10.1002/anie.200600412
F. Goettmann, A. Fischer, M. Antonietti, A. Thomas, Chem. Commun. (2006) 4530–4532.
M. Doblinger, B.V. Lotsch, J. Wack, et al., Chem. Commun. (2009) 1541–1543.
doi: 10.1039/b820032g
Y. Ham, K. Maeda, D. Cha, K. Takanabe, K. Domen, Chem. Asian J. 8 (2013) 218–224.
doi: 10.1002/asia.201200781
H. Schlomberg, J. Kroger, G. Savasci, et al., Chem. Mater. 31 (2019) 7478–7486.
doi: 10.1021/acs.chemmater.9b02199
M. Liu, G. Zhang, X. Liang, et al., Angew. Chem. Int. Ed. 62 (2023) e202304694.
doi: 10.1002/anie.202304694
J. Wang, S. Wang, Coord. Chem. Rev. 453 (2022) 214338.
doi: 10.1016/j.ccr.2021.214338
B.V. Lotsch, M. Döblinger, J. Sehnert, et al., Chem. Eur. J. 13 (2007) 4969–4980.
doi: 10.1002/chem.200601759
P.S. Wu, T.J. Lin, S.S. Hou, et al., J. Mater. Chem. A 10 (2022) 7728–7738.
doi: 10.1039/d1ta10091b
M. Chang, Z. Pan, D. Zheng, et al., ChemSusChem 16 (2023) e202202255.
doi: 10.1002/cssc.202202255
S. Mazzanti, A. Savateev, Chempluschem 85 (2020) 2499–2517.
doi: 10.1002/cplu.202000606
K. Schwinghammer, B. Tuffy, M.B. Mesch, et al., Angew. Chem. Int. Ed. 52 (2013) 2435–2439.
doi: 10.1002/anie.201206817
J.N. Burrow, R.A. Ciufo, L.A. Smith, et al., ACS Nano 16 (2022) 5393–5403.
doi: 10.1021/acsnano.1c08912
J. Kröger, A. Jiménez-Solano, G. Savasci, et al., Adv. Energy Mater. 11 (2020) 2003016.
doi: 10.1002/aenm.202003016
D. Burmeister, H.A. Tran, J. Muller, et al., Angew. Chem. Int. Ed. 61 (2022) e202111749.
doi: 10.1002/anie.202111749
J. Kröger, A. Jiménez-Solano, G. Savasci, et al., Adv. Energy Mater. 11 (2021) 2003016.
doi: 10.1002/aenm.202003016
R. Xu, D.H. Si, S.S. Zhao, et al., J. Am. Chem. Soc. 145 (2023) 8261–8270.
doi: 10.1021/jacs.3c02370
M. Zhang, P. Huang, J.P. Liao, et al., Angew. Chem. Int. Ed. 62 (2023) e202311999.
doi: 10.1002/anie.202311999
W. Wang, C. Zhou, Y. Yang, et al., Chem. Eng. J. 404 (2021) 126540.
doi: 10.1016/j.cej.2020.126540
L. Lin, C. Wang, W. Ren, et al., Chem. Sci. 8 (2017) 5506–5511.
doi: 10.1039/C7SC00900C
Z. Zhao, Z. Shu, J. Zhou, et al., J. Mater. Chem. A 10 (2022) 17668–17679.
doi: 10.1039/d2ta04213d
W. Wang, Z. Shu, J. Zhou, et al., ACS Appl. Mater. Interfaces 14 (2022) 41131–41140.
doi: 10.1021/acsami.2c12959
S. Yang, X. Deng, P. Chen, et al., Appl. Catal. B 311 (2022) 121370.
doi: 10.1016/j.apcatb.2022.121370
W. Wang, Z. Shu, Z. Liao, et al., Chem. Eng. J. 424 (2021) 130332.
doi: 10.1016/j.cej.2021.130332
J. Zhang, G. Ye, C. Zhang, et al., ChemSusChem 15 (2022) e202201616.
doi: 10.1002/cssc.202201616
Q. Liang, Z.H. Huang, F. Kang, Q.H. Yang, ChemCatChem 7 (2015) 2897–2902.
doi: 10.1002/cctc.201500076
C. Adler, S. Selim, I. Krivtsov, et al., Adv. Funct. Mater. 31 (2021) 2105369.
doi: 10.1002/adfm.202105369
F. Podjaski, B.V. Lotsch, Adv. Energy Mater. 11 (2020) 2003049.
doi: 10.1002/aenm.202003049
L. Luo, S. Wang, L. Zhang, et al., Appl. Catal., B, 343 (2024) 123475.
doi: 10.1016/j.apcatb.2023.123475
V.W.h. Lau, D. Klose, H. Kasap, et al., Angew. Chem. Int. Ed. 56 (2017) 510–514.
doi: 10.1002/anie.201608553
Z. Zeng, X. Quan, H. Yu, et al., Appl. Catal. B 236 (2018) 99–106.
doi: 10.1016/j.apcatb.2018.05.003
H. Ou, C. Tang, X. Chen, M. Zhou, X. Wang, ACS Catal. 9 (2019) 2949–2955.
doi: 10.1021/acscatal.9b00314
M.K. Bhunia, S. Melissen, M.R. Parida, et al., Chem. Mater. 27 (2015) 8237–8247.
doi: 10.1021/acs.chemmater.5b02974
L.S. Zhang, X.H. Jiang, Z.A. Zhong, et al., Angew. Chem. Int. Ed. 60 (2021) 21751–21755.
doi: 10.1002/anie.202109488
G. Algara-Siller, N. Severin, S.Y. Chong, et al., Angew. Chem. Int. Ed. 53 (2014) 7450–7455.
doi: 10.1002/anie.201402191
M.B. Mesch, K. Bärwinkel, Y. Krysiak, et al., Chem. Eur. J. 22 (2016) 16878–16890.
doi: 10.1002/chem.201603726
C.Z. Liao, V.W.h. Lau, M. Su, et al., Inorg. Chem. 58 (2019) 15880–15888.
doi: 10.1021/acs.inorgchem.9b02287
K. Zhang, C. Liu, Q. Liu, Z. Mo, D. Zhang, Catalysts 13(4) (2023) 717.
doi: 10.3390/catal13040717
A. Savateev, S. Pronkin, J.D. Epping, et al., J. Mater. Chem. A 5 (2017) 8394–8401.
doi: 10.1039/C7TA01714F
N.A. Rodriguez, A. Savateev, M.A. Grela, D. Dontsova, ACS Appl. Mater. Interfaces 9 (2017) 22941–22949.
doi: 10.1021/acsami.7b04745
A. Savateev, S. Pronkin, J.D. Epping, et al., ChemCatChem 9 (2017) 167–174.
doi: 10.1002/cctc.201601165
G. Zhang, G. Li, T. Heil, et al., Angew. Chem., Int. Ed. 58 (2019) 3433–3437.
doi: 10.1002/anie.201811938
A. Savateev, M. Antonietti, ChemCatChem 11 (2019) 6166–6176.
doi: 10.1002/cctc.201901076
Y. Li, D. Zhang, X. Feng, Q. Xiang, Chin. J. Catal. 41 (2020) 21–30.
doi: 10.1016/S1872-2067(19)63427-3
L. Lin, W. Ren, C. Wang, et al., Appl. Catal., B 231 (2018) 234–241.
doi: 10.1016/j.apcatb.2018.03.009
C.C. Chen, J.J. Wu, ACS Appl. Energy Mater. 5 (2022) 9733–9741.
doi: 10.1021/acsaem.2c01412
B. Zhai, H. Li, G. Gao, et al., Adv. Funct. Mater. 32 (2022) 2207375.
doi: 10.1002/adfm.202207375
G. Zhang, L. Lin, G. Li, et al., Angew. Chem., Int. Ed. 57 (2018) 9372–9376.
doi: 10.1002/anie.201804702
X. Liang, S. Xue, C. Yang, et al., Angew. Chem. Int. Ed. 62 (2023) e202216434.
doi: 10.1002/anie.202216434
L. Lin, Z. Lin, J. Zhang, et al., Nat. Catal. 3 (2020) 649–655.
doi: 10.1038/s41929-020-0476-3
X. Zhang, P. Ma, C. Wang, et al., Energy Environ. Sci. 15 (2022) 830–842.
doi: 10.1039/d1ee02369a
L. Jiang, J. Yang, X. Yuan, et al., Adv. Colloid Interface Sci. 296 (2021) 102523.
doi: 10.1016/j.cis.2021.102523
A. Meng, Z. Teng, Q. Zhang, C. Su, Chem. Eur. J. 15 (2020) 3405–3415.
doi: 10.1002/asia.202000850
H. Kasap, C.A. Caputo, B.C. Martindale, et al., J. Am. Chem. Soc. 138 (2016) 9183–9192.
doi: 10.1021/jacs.6b04325
V.W. Lau, I. Moudrakovski, T. Botari, et al., Nat. Commun. 7 (2016) 12165.
doi: 10.1038/ncomms12165
H. Li, B. Zhu, S. Cao, J. Yu, Chem. Commun. 56 (2020) 5641–5644.
doi: 10.1039/d0cc01338b
C.C. Chen, D.L. Tsai, H.T. Liu, J.J. Wu, ACS Sustain. Chem. Eng. 11 (2023) 6435–6444.
doi: 10.1021/acssuschemeng.3c00363
B.X. Zhou, S.S. Ding, B.J. Zhang, et al., Appl. Catal. B 254 (2019) 321–328.
doi: 10.1016/j.apcatb.2019.05.015
D. Liu, C. Li, C. Zhao, et al., Chem. Eng. J. 438 (2022) 135623.
doi: 10.1016/j.cej.2022.135623
T. Huo, Q. Deng, F. Yu, et al., ACS Appl. Mater. Interfaces 14 (2022) 13419–13430.
doi: 10.1021/acsami.2c01522
K. Schwinghammer, M.B. Mesch, V. Duppel, et al., J. Am. Chem. Soc. 136 (2014) 1730–1733.
doi: 10.1021/ja411321s
T.S. Miller, T.M. Suter, A.M. Telford, et al., Nano. Lett. 17 (2017) 5891–5896.
doi: 10.1021/acs.nanolett.7b01353
J. Jia, E.R. White, A.J. Clancy, et al., Angew. Chem. Int. Ed. 57 (2018) 12656–12660.
doi: 10.1002/anie.201800875
F. Guo, B. Hu, C. Yang, et al., Adv. Mater. 33 (2021) e2101466.
doi: 10.1002/adma.202101466
L. Tian, J. Li, F. Liang, et al., Appl. Catal. B 225 (2018) 307–313.
doi: 10.1016/j.apcatb.2017.11.082
Y. Li, H. Wang, X. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 12891–12896.
doi: 10.1002/anie.202101090
Z. Zhang, Z. Pan, Y. Guo, et al., Appl. Catal. B 261 (2020) 118212.
doi: 10.1016/j.apcatb.2019.118212
S. Mazzanti, S. Cao, K. Brummelhuis, et al., Appl. Catal. B 285 (2021) 119773.
doi: 10.1016/j.apcatb.2020.119773
L. Cheng, X. Yue, J. Fan, Q. Xiang, Adv. Mater. 34 (2022) e2200929.
doi: 10.1002/adma.202200929
J. Zhang, X. Liang, C. Zhang, et al., Angew. Chem. Int. Ed. 61 (2022) e202210849.
doi: 10.1002/anie.202210849
Z. Sun, H. Dong, Q. Yuan, et al., Chem. Eng. J. 435 (2022) 134865.
doi: 10.1016/j.cej.2022.134865
J.C. Liu, Y. Tang, Y.G. Wang, T. Zhang, J. Li, Natl. Sci. Rev. 5 (2018) 638–641.
doi: 10.1093/nsr/nwy094
Y. Zhang, J. Yang, R. Ge, et al., Coord. Chem. Rev. 461 (2022) 214493.
doi: 10.1016/j.ccr.2022.214493
S. Wei, A. Li, J.C. Liu, et al., Nat. Nanotechnol. 13 (2018) 856–861.
doi: 10.1038/s41565-018-0197-9
Z. Chen, E. Vorobyeva, S. Mitchell, et al., Natl. Sci. Rev. 5 (2018) 642–652.
doi: 10.1093/nsr/nwy048
M. Liu, X. Liu, D. Fu, et al., Appl. Catal. B 318 (2022) 121896.
doi: 10.1016/j.apcatb.2022.121896
Y. Cao, S. Chen, Q. Luo, et al., Angew. Chem. Int. Ed. 56 (2017) 12191–12196.
doi: 10.1002/anie.201706467
L. Hu, T. Wang, Q. Nie, et al., Carbon 200 (2022) 187–198.
doi: 10.1016/j.carbon.2022.08.031
B. Kumru, D. Cruz, T. Heil, M. Antonietti, Chem. Mater. 32 (2020) 9435–9443.
doi: 10.1021/acs.chemmater.0c03616
L. Xing, Q. Yang, C. Zhu, et al., Nat. Commun. 14 (2023) 1501-1501.
doi: 10.1038/s41467-023-37113-8
M.A.R. da Silva, I.F. Silva, Q. Xue, et al., Appl. Catal. B 304 (2022) 120965.
doi: 10.1016/j.apcatb.2021.120965
S. Shen, J. Chen, Y. Wang, et al., Sci. Bull. 67 (2022) 520–528.
doi: 10.1016/j.scib.2021.11.024
S. Guo, X. Li, J. Li, B. Wei, Nat. Commun. 12 (2021) 1343.
doi: 10.1038/s41467-021-21526-4
J. Yang, A. Acharjya, M.Y. Ye, et al., Angew. Chem. Int. Ed. 60 (2021) 19797–19803.
doi: 10.1002/anie.202104870
M. Wang, Z. Zhang, Z. Chi, et al., Adv. Funct. Mater. 33 (2023) 2211565.
doi: 10.1002/adfm.202211565
C. Cheng, L. Mao, X. Kang, et al., Appl. Catal. B 331 (2023) 122733.
doi: 10.1016/j.apcatb.2023.122733
M. Lu, M. Zhang, J. Liu, et al., J. Am. Chem. Soc. 144 (2022) 1861–1871.
doi: 10.1021/jacs.1c11987
J.J. Masana, J. Xiao, H. Zhang, et al., Appl. Catal. B 323 (2023) 122199.
doi: 10.1016/j.apcatb.2022.122199
Y. Xia, Z. Tian, T. Heil, et al., Joule 3 (2019) 2792–2805.
doi: 10.1016/j.joule.2019.08.011
S. Mazzanti, B. Kurpil, B. Pieber, M. Antonietti, A. Savateev, Nat. Commun. 11 (2020) 1387.
doi: 10.1038/s41467-020-15131-0
Y. Markushyna, P. Lamagni, J. Catalano, et al., ACS Catal. 10 (2020) 7336–7342.
doi: 10.1021/acscatal.0c02176
Y. Markushyna, C.M. Schusslbauer, T. Ullrich, et al., Angew. Chem., Int. Ed. 60 (2021) 20543–20550.
doi: 10.1002/anie.202106183
A. Savateev, I. Ghosh, B. Konig, M. Antonietti, Angew. Chem. Int. Ed. 57 (2018) 15936–15947.
doi: 10.1002/anie.201802472
D. Aboagye, R. Djellabi, F. Medina, S. Contreras, Angew. Chem. Int. Ed. (2023) e202301909.
M.F. Kuehnel, E. Reisner, Angew. Chem. Int. Ed. 57 (2018) 3290–3296.
doi: 10.1002/anie.201710133
D.B. Nimbalkar, V.C. Nguyen, C.Y. Shih, H. Teng, Appl. Catal. B 316 (2022) 121601.
doi: 10.1016/j.apcatb.2022.121601
I. Krivtsov, D. Mitoraj, C. Adler, et al., Angew. Chem. Int. Ed. 59 (2020) 487–495.
doi: 10.1002/anie.201913331
M. Zhou, L. Zeng, R. Li, et al., Appl. Catal. B 317 (2022) 121719.
doi: 10.1016/j.apcatb.2022.121719
Z. Yang, L. Li, J. Gao, et al., ACS ES&T Engin. 2 (2022) 2142–2149.
doi: 10.1021/acsestengg.2c00178
C. Liang, X.M. Wang, W. Liu, et al., Chem. Eng. J. 466 (2023) 142931.
doi: 10.1016/j.cej.2023.142931
J.N. Chang, Q. Li, J.W. Shi, et al., Angew. Chem. Int. Ed. 62 (2023) e202218868.
doi: 10.1002/anie.202218868
Y.Z. Zhang, C. Liang, H.P. Feng, W. Liu, Chem. Eng. J. 446 (2022) 137379.
doi: 10.1016/j.cej.2022.137379
A. Rogolino, I.F. Silva, N.V. Tarakina, et al., ACS Appl. Mater. Interfaces 14 (2022) 49820–49829.
doi: 10.1021/acsami.2c14872
I. Krivtsov, A. Vazirani, D. Mitoraj, et al., J. Mater. Chem. A 11 (2023) 2314–2325.
doi: 10.1039/d2ta08045a
D. Zhang, W. He, J. Ye, et al., Small 17 (2021) 2005149.
doi: 10.1002/smll.202005149
B. Tian, D. Ho, J. Qin, et al., Prog. Mater. Sci. 133 (2023) 101056.
doi: 10.1016/j.pmatsci.2022.101056
Y. Li, B. Wang, Q.J. Xiang, Q. Zhang, G. Chen, Dalton Trans. 51 (2022) 16527–16535.
doi: 10.1039/d2dt02731c
M. Song, S. Yang, H. Peng, et al., Nano Energy 116 (2023) 108784.
doi: 10.1016/j.nanoen.2023.108784
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Chao-Long Chen , Rong Chen , La-Sheng Long , Lan-Sun Zheng , Xiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Feng Cui , Fangman Chen , Xiaochun Xie , Chenyang Guo , Kai Xiao , Ziping Wu , Yinglu Chen , Junna Lu , Feixia Ruan , Chuanxu Cheng , Chao Yang , Dan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Huan Yao , Jian Qin , Yan-Fang Wang , Song-Meng Wang , Liu-Huan Yi , Shi-Yao Li , Fangfang Du , Liu-Pan Yang , Li-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Tiantian Zheng , Huiyi Wang , Huimin Li , Xuanhe Liu , Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Miaomiao He , Zhiqing Ge , Qiang Zhou , Jiaqing He , Hong Gong , Lingling Li , Pingping Zhu , Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
Weijian Zhang , Xianyu Deng , Liying Wang , Jian Wang , Xiuting Guo , Lianggui Huang , Xinyi Wang , Jun Wu , Linjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343