Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production
-
* Corresponding author.
E-mail address: ybzhao@gzhu.edu.cn (Y. Zhao).
Citation:
Zhenchun Yang, Bixiao Guo, Zhenyu Hu, Kun Wang, Jiahao Cui, Lina Li, Chun Hu, Yubao Zhao. Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production[J]. Chinese Chemical Letters,
;2024, 35(8): 109251.
doi:
10.1016/j.cclet.2023.109251
C. Cao, X. Wang, N. Yang, et al., Chem. Sci. 13 (2022) 863–889.
doi: 10.1039/D1SC05482A
Y. Wen, F. Huo, C. Yin, Chin. Chem. Lett. 30 (2019) 1834–1842.
doi: 10.1016/j.cclet.2019.07.006
Y. Xue, Y. Wang, Z. Pan, et al., Angew. Chem. Int. Ed. 60 (2021) 10469–10480.
doi: 10.1002/anie.202011215
J.M. Campos-Martin, G. Blanco-Brieva, J.L. Fierro, Angew. Chem. Int. Ed. 45 (2006) 6962–6984.
doi: 10.1002/anie.200503779
C. Xia, Y. Xia, P. Zhu, et al., Science 366 (2019) 226–231.
doi: 10.1126/science.aay1844
X. Hu, X. Zeng, Y. Liu, et al., Nanoscale 12 (2020) 16008–16027.
doi: 10.1039/D0NR03178J
C. Huang, E. Fan, H. Xu, et al., Solid State Sci. 113 (2021) 106533.
doi: 10.1016/j.solidstatesciences.2021.106533
Y. Huang, Y. Jian, L. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 5245–5249.
doi: 10.1002/anie.202014317
H. Wang, Y. Xu, D. Xu, et al., ACS EST Eng. 2 (2022) 140–157.
doi: 10.1021/acsestengg.1c00337
C. Zhao, Z. Chen, R. Shi, et al., Adv. Mater. 32 (2020) 1907296.
doi: 10.1002/adma.201907296
S. Zhang, Y. Yang, Y. Zhai, et al., Chin. Chem. Lett. 34 (2023) 107652.
doi: 10.1016/j.cclet.2022.06.075
X. Chen, W. Zhang, L. Zhang, et al., ACS Appl. Mater. Interfaces 13 (2021) 25868–25878.
doi: 10.1021/acsami.1c02953
H. Cheng, H. Lv, J. Cheng, et al., Adv. Mater. 34 (2022) 2107480.
doi: 10.1002/adma.202107480
K. Sahel, L. Elsellami, I. Mirali, et al., Appl. Catal. B 188 (2016) 106–112.
doi: 10.1016/j.apcatb.2015.12.044
J. Luo, C. Fan, L. Tang, et al., Appl. Catal. B 301 (2022) 120757.
doi: 10.1016/j.apcatb.2021.120757
V. Briega-Martos, A. Ferre-Vilaplana, A. de la Peña, et al., ACS Catal. 7 (2017) 1015–1024.
doi: 10.1021/acscatal.6b03043
H. Zhang, L.H. Guo, L. Zhao, et al., J. Phys. Chem. Lett. 6 (2015) 958–963.
doi: 10.1021/acs.jpclett.5b00149
Y. Kofuji, S. Ohkita, Y. Shiraishi, et al., ACS Sustain. Chem. Eng. 5 (2017) 6478–6485.
doi: 10.1021/acssuschemeng.7b00575
L. Li, L. Xu, Z. Hu, et al., Adv. Funct. Mater. 31 (2021) 2106120.
doi: 10.1002/adfm.202106120
F. Liu, R. Shi, Z. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 11791–11795.
doi: 10.1002/anie.201906416
Y. Shiraishi, T. Takii, T. Hagi, et al., Nat. Mater. 18 (2019) 985–993.
doi: 10.1038/s41563-019-0398-0
Q. Tian, L. Jing, S. Ye, et al., Small 17 (2021) e2103224.
doi: 10.1002/smll.202103224
L. Xu, Y. Liu, L. Li, et al., ACS Catal. 11 (2021) 14480–14488.
doi: 10.1021/acscatal.1c03690
C. Liu, T. Bao, L. Yuan, et al., Adv. Funct. Mater. 32 (2021) 2111404.
L. Li, D. Cruz, A. Savateev, et al., Appl. Catal. B 229 (2018) 249–253.
doi: 10.1016/j.apcatb.2018.01.065
M. Li, Q. Zheng, D.P. Durkin, et al., J. Hazard. Mater. 436 (2022) 129251.
doi: 10.1016/j.jhazmat.2022.129251
X. Li, J. Zhang, Y. Huo, et al., Appl. Catal. B 280 (2021) 119452.
doi: 10.1016/j.apcatb.2020.119452
Y. Fu, C.A. Liu, M. Zhang, et al., Adv. Energy Mater. 8 (2018) 1802525.
doi: 10.1002/aenm.201802525
D. Li, C. Wen, J. Huang, et al., Appl. Catal. B 307 (2022) 121099.
doi: 10.1016/j.apcatb.2022.121099
K. Li, L. Bao, S. Cao, et al., ACS Appl. Energy Mater. 4 (2021) 12965–12973.
doi: 10.1021/acsaem.1c02602
L. Dai, A. Dong, X. Meng, et al., Angew. Chem. Int. Ed. 62 (2023) e202300224.
doi: 10.1002/anie.202300224
J. Yang, A. Acharjya, M.Y. Ye, et al., Angew. Chem. Int. Ed. 60 (2021) 19797–19803.
doi: 10.1002/anie.202104870
Q. Zhi, W. Liu, R. Jiang, et al., J. Am. Chem. Soc. 144 (2022) 21328–21336.
doi: 10.1021/jacs.2c09482
Y. Zhao, P. Zhang, Z. Yang, et al., Nat. Commun. 12 (2021) 3701.
doi: 10.1038/s41467-021-24048-1
Q. Wu, J. Cao, X. Wang, et al., Nat. Commun. 12 (2021) 483.
doi: 10.1038/s41467-020-20823-8
Z. Teng, Q. Zhang, H. Yang, et al., Nat. Catal. 4 (2021) 374–384.
doi: 10.1038/s41929-021-00605-1
F. Yu, L. Wang, Q. Xing, et al., Chin. Chem. Lett. 31 (2020) 1648–1653.
doi: 10.1016/j.cclet.2019.08.020
G. Zhang, G. Li, T. Heil, et al., Angew. Chem. Int. Ed. 131 (2019) 3471–3475.
doi: 10.1002/ange.201811938
A. Savateev, S. Pronkin, J.D. Epping, et al., ChemCatChem 9 (2017) 167–174.
doi: 10.1002/cctc.201601165
A. Savateev, S. Pronkin, M.G. Willinger, et al., Chem. Asian J. 12 (2017) 1517–1522.
doi: 10.1002/asia.201700209
Z. Yang, L. Li, J. Cui, et al., Chem. Eur. J. 28 (2022) e202202122.
doi: 10.1002/chem.202202122
Z. Yang, L. Li, J. Gao, et al., ACS EST Eng. 2 (2022) 2142–2149.
doi: 10.1021/acsestengg.2c00178
Z. Yang, L. Li, S. Zeng, et al., ACS Appl. Mater. Interfaces 15 (2023) 8232–8240.
doi: 10.1021/acsami.2c22366
C. Merschjann, S. Tschierlei, T. Tyborski, et al., Adv. Mater. 27 (2015) 7993–7999.
doi: 10.1002/adma.201503448
R. Chen, Z. Ren, Y. Liang, et al., Nature 610 (2022) 296–301.
doi: 10.1038/s41586-022-05183-1
S. Wu, H. Yu, S. Chen, et al., ACS Catal. 10 (2020) 14380–14389.
doi: 10.1021/acscatal.0c03359
J. Cheng, Y. Hou, K. Lian, et al., ACS Catal. 12 (2022) 1797–1808.
doi: 10.1021/acscatal.1c05013
K.C. Bedin, A.C. Martins, A.L. Cazetta, et al., Chem. Eng. J. 286 (2016) 476–484.
doi: 10.1016/j.cej.2015.10.099
L. Kong, J. Wang, Y. Jia, et al., J. Raman Spectrosc. 41 (2010) 989–995.
doi: 10.1002/jrs.2536
Z. Zhai, H. Zhang, F. Niu, et al., ACS Nano 16 (2022) 21002–21012.
doi: 10.1021/acsnano.2c08643
L. Du, Q. Tian, X. Zheng, et al., Energy Environ. Mater. 5 (2021) 912–917.
G. Zhang, Y. Xu, M. Rauf, et al., Adv. Sci. 9 (2022) e2201677.
doi: 10.1002/advs.202201677
S. Gao, X. Wang, C. Song, et al., Appl. Catal. B 295 (2021) 120272.
doi: 10.1016/j.apcatb.2021.120272
Z. Fang, Y. Bai, L. Li, et al., Nano Energy 75 (2020) 104865.
doi: 10.1016/j.nanoen.2020.104865
W. Ren, J. Cheng, H. Ou, et al., J. Catal. 389 (2020) 636–645.
doi: 10.1016/j.jcat.2020.07.005
L.L. Liu, F. Chen, J.H. Wu, et al., P. Natl. Acad. Sci. U. S. A. 120 (2023) e2215305120.
doi: 10.1073/pnas.2215305120
X. He, H. Shang, C. Wang, et al., Chin. Chem. Lett. 32 (2021) 3377–3381.
doi: 10.1016/j.cclet.2021.04.028
R.R. Pawar, Lalhmunsiama, M. Kim, et al., Appl. Clay Sci. 162 (2018) 339–350.
doi: 10.1016/j.clay.2018.06.014
S. Yu, J. Li, Y. Zhang, et al., Nano Energy 50 (2018) 383–392.
doi: 10.1016/j.nanoen.2018.05.053
J. Moan, E. Wold, Nature 279 (1979) 450–451.
doi: 10.1038/279450a0
S. Trasatti, Pure Appl. Chem. 58 (1986) 955–966.
doi: 10.1351/pac198658070955
H. Yu, R. Shi, Y. Zhao, et al., Adv. Mater. 29 (2017) 1605148.
doi: 10.1002/adma.201605148
M.O. Eze, L.C. Nnamani, R.I. Ojiako, et al., Free Rad. Res. Cornms. 4 (1987) 105–108.
R. Palominos, J. Freer, M.A. Mondaca, et al., J. Photoch. Photobio. A 193 (2008) 139–145.
doi: 10.1016/j.jphotochem.2007.06.017
J. Luo, Y. Liu, C. Fan, et al., ACS Catal. 11 (2021) 11440–11450.
doi: 10.1021/acscatal.1c03103
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Liyang Qin , Luna Wu , Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Anna Dai , Zhenxiong Huang , Li Tian , Zheng Zhang , Xiangjiu Guan , Liejin Guo . Polymeric Carbon Nitride for Photocatalytic Overall Water Splitting: Modification Strategies and Recent Advances. Chinese Journal of Structural Chemistry, 2025, 44(8): 100630-100630. doi: 10.1016/j.cjsc.2025.100630
Shuhong Wu , Wanying Han , Ying Wang , Yan Zhuang , Hui Niu , Lurong Li , Junhui Wang , Yuan Liu , Huan Lin , Kaifeng Wu , Jinni Shen , Yingguang Zhang , Michael K. H. Leung , Jinlin Long . Close π-π stacking facilitated intermolecular charge separation in self-assembled perylene monoimide for photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(6): 100592-100592. doi: 10.1016/j.cjsc.2025.100592
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Sili Qing , Xuanzhao Lu , Yujing Jiang , Charitha Thambiliyagodage , Bing Song , Ao Xia , Jian-Rong Zhang , Wenlei Zhu , Li-Ping Jiang , Xiaoge Wu , Jun-Jie Zhu . ZIF-8 confined carbon dots/bilirubin oxidase on microalgal cells to boost oxygen reduction reaction in photo-biocatalytic fuel cells for pollutants removal. Chinese Chemical Letters, 2026, 37(1): 110576-. doi: 10.1016/j.cclet.2024.110576
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Congxu Wang , Xuan Xie , Feng Qiu , Lei Zhu , Imran Shakir , Yuxi Xu . Recent advances in photocatalytic overall production of hydrogen peroxide from metal-free photocatalysts. Chinese Chemical Letters, 2026, 37(1): 111604-. doi: 10.1016/j.cclet.2025.111604
Jihong Li , Zhenying Feng , Xiaokun Sheng , Keren Chen , Jingming Ran , Luyao Li , Lei Shi , Tongzhou Wang , Yida Deng . Square-meter-scale nickel-based anode: Facile room-temperature construction for efficient industrial water electrolysis. Chinese Chemical Letters, 2025, 36(11): 111652-. doi: 10.1016/j.cclet.2025.111652
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348