Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis
-
* Corresponding authors.
E-mail addresses: shuangyinwang@hnu.edu.cn (S. Wang), lzqgzu@gzhu.edu.cn (Z.-Q. Liu).
Citation: Shengkai Li, Yuqin Zou, Chen Chen, Shuangyin Wang, Zhao-Qing Liu. Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis[J]. Chinese Chemical Letters, ;2024, 35(8): 109147. doi: 10.1016/j.cclet.2023.109147
M. Jouny, J.J. Lv, T. Cheng, et al., Nat. Chem. 11 (2019) 846–851.
doi: 10.1038/s41557-019-0312-z
Y. Feng, H. Yang, Y. Zhang, et al., Nano Lett. 20 (2020) 8282–8289.
doi: 10.1021/acs.nanolett.0c03400
J.E. Kim, S. Choi, M. Balamurugan, et al., Trends Chem. 2 (2020) 1004–1019.
doi: 10.1016/j.trechm.2020.09.003
M.T. Sabatini, L.T. Boulton, H.F. Sneddon, et al., Nat. Catal. 2 (2019) 10–17.
doi: 10.1038/s41929-018-0211-5
X. Wang, Nat. Catal. 2 (2019) 98–102.
doi: 10.1038/s41929-018-0215-1
M. Alfian, W.W. Purwanto, Energy Sci. Eng. 7 (2019) 292–304.
doi: 10.1002/ese3.281
M. Yamauchi, H. Saito, T. Sugimoto, et al., Coord. Chem. Rev. 472 (2022) 214773.
doi: 10.1016/j.ccr.2022.214773
C.Y. Lin, D. Zhang, Z. Zhao, et al., Adv. Mater. 30 (2018) 1703646.
doi: 10.1002/adma.201703646
L.F.T. Novaes, J. Liu, Y. Shen, et al., Chem. Soc. Rev. 50 (2021) 7941–8002.
doi: 10.1039/D1CS00223F
X. Peng, L. Zeng, D. Wang, et al., Chem. Soc. Rev. 52 (2023) 2193–2217.
doi: 10.1039/D2CS00381C
Z. Tao, C.L. Rooney, Y. Liang, et al., J. Am. Chem. Soc. 143 (2021) 19630–19642.
doi: 10.1021/jacs.1c10714
J. Wang, Z. Yao, L. Hao, et al., Curr. Opin. Green Sustain. 37 (2022) 100648.
doi: 10.1016/j.cogsc.2022.100648
Z. Mei, Y. Zhou, W. Lv, et al., ACS Sustain. Chem. Eng. 10 (2022) 12477–12496.
doi: 10.1021/acssuschemeng.2c03681
Y. Huang, R. Yang, C. Wang, et al., ACS Energy Lett. 7 (2021) 284–291.
J. Li, Y. Zhang, K. Kuruvinashetti, et al., Nat. Rev. Chem. 6 (2022) 303–319.
doi: 10.1038/s41570-022-00379-5
X. Fu, J. Zhang, Y. Kang, Chem. Catal. 2 (2022) 2590–2613.
doi: 10.1016/j.checat.2022.09.001
M. Fasihi, R. Weiss, et al., J. Appl. Energy 294 (2021) 116170.
doi: 10.1016/j.apenergy.2020.116170
G. Qing, R. Ghazfar, S.T. Jackowski, et al., Chem. Rev. 120 (2020) 5437–5516.
doi: 10.1021/acs.chemrev.9b00659
S. Raghunathan, T. Jaganade, U.D. Priyakumar, Biophys. Rev. 12 (2020) 65–84.
doi: 10.1007/s12551-020-00620-9
L. Celleno, Dermatol. Ther. 31 (2018) e12690.
doi: 10.1111/dth.12690
Z.J. Schiffer, K. Manthiram, Joule 1 (2017) 10–14.
doi: 10.1016/j.joule.2017.07.008
C. Chen, N. He, S. Wang, Small Sci. 1 (2021) 2100070.
doi: 10.1002/smsc.202100070
C. Lv, L. Zhong, H. Liu, et al., Nat. Sustain. 4 (2021) 868–876.
doi: 10.1038/s41893-021-00741-3
X. Liu, Y. Jiao, Y. Zheng, et al., Nat. Commun. 13 (2022) 5471.
doi: 10.1038/s41467-022-33258-0
J.M.P. Martirez, E.A. Carter, ACS Nano 10 (2016) 2940–2949.
doi: 10.1021/acsnano.6b00085
Y. Jia, K. Jiang, H. Wang, et al., Chem 5 (2019) 1371–1397.
doi: 10.1016/j.chempr.2019.02.008
C. Xie, D. Yan, W. Chen, et al., Mater. Today 31 (2019) 47–68.
doi: 10.1016/j.mattod.2019.05.021
X. Yan, Y. Jia, X. Yao, Small Struct. 2 (2021) 2000067.
doi: 10.1002/sstr.202000067
Z. Xiao, C. Xie, Y. Wang, et al., J. Energy Chem. 53 (2021) 208–225.
doi: 10.1016/j.jechem.2020.04.063
W. Li, D. Wang, Y. Zhang, et al., Adv. Mater. 32 (2020) 1907879.
doi: 10.1002/adma.201907879
Y. Lu, L. Zhou, S. Wang, et al., Nano Res. 16 (2023) 1890–1912.
doi: 10.1007/s12274-022-4858-5
M. Shibata, K. Yoshida, N. Furuya, J. Electrochem. Soc. 145 (1998) 595.
doi: 10.1149/1.1838309
M. Shibata, N. Furuya, J. Electroanal. Chem. 507 (2001) 177–184.
doi: 10.1016/S0022-0728(01)00363-1
C. Lv, J. Liu, C. Lee, et al., ACS Nano 16 (2022) 15512–15527.
doi: 10.1021/acsnano.2c07260
N. Cao, Y. Quan, A. Guan, et al., J. Colloid Interf. Sci. 577 (2020) 109–114.
doi: 10.1016/j.jcis.2020.05.014
N. Meng, Y. Huang, Y. Liu, et al., Cell Rep. Phys. Sci. 2 (2021) 100378.
doi: 10.1016/j.xcrp.2021.100378
C. Lv, C. Lee, L. Zhong, et al., ACS Nano 16 (2022) 8213–8222.
doi: 10.1021/acsnano.2c01956
X. Wei, X. Wen, Y. Liu, et al., J. Am. Chem. Soc. 144 (2022) 11530–11535.
doi: 10.1021/jacs.2c03452
X. Liu, P.V. Kumar, Q. Chen, et al., Appl. Catal. B: Environ. 316 (2022) 121618.
doi: 10.1016/j.apcatb.2022.121618
Z. Li, P. Zhou, M. Zhou, et al., Appl. Catal. B: Environ. 338 (2023) 122962.
doi: 10.1016/j.apcatb.2023.122962
S. Zhang, M. Jin, T. Shi, et al., Angew. Chem. Int. Ed. 59 (2020) 13423–13429.
doi: 10.1002/anie.202005930
D. Yao, C. Tang, L. Li, et al., Adv. Energy Mater. 10 (2020) 2001289.
doi: 10.1002/aenm.202001289
D.B. Kayan, F. Köleli, Appl. Catal. B: Environ. 181 (2016) 88–93.
doi: 10.1016/j.apcatb.2015.07.045
Y.E. Kim, B. Kim, W. Lee, et al., Chem. Eng. J. 413 (2021) 127448.
doi: 10.1016/j.cej.2020.127448
Y. Zhang, X. Chen, W. Wang, et al., Appl. Catal. B: Environ. 310 (2022) 121346.
doi: 10.1016/j.apcatb.2022.121346
Z. Wei, Z. Gu, Y. Zhang, et al., Appl. Catal. B: Environ. 320 (2023) 121915.
doi: 10.1016/j.apcatb.2022.121915
H. Su, J. Jiang, N. Li, et al., Chem. Eng. J. 446 (2022) 137226.
doi: 10.1016/j.cej.2022.137226
C. Chen, X. Zhu, X. Wen, et al., Nat. Chem. 12 (2020) 717–724.
doi: 10.1038/s41557-020-0481-9
L. Pan, J. Wang, F. Lu, et al., Angew. Chem. 135 (2023) e202216835.
doi: 10.1002/ange.202216835
W. Wu, Y. Yang, Y. Wang, et al., Chem Catal. 2 (2022) 3225–3238.
doi: 10.1016/j.checat.2022.09.012
S. Liu, S. Yin, Z. Wang, et al., Cell Rep. Phys. Sci. 3 (2022) 100869.
doi: 10.1016/j.xcrp.2022.100869
D. Zhang, Y. Xue, X. Zheng, et al., Natl. Sci. Rev. 10 (2023) nwac209.
doi: 10.1093/nsr/nwac209
D. Saravanakumar, J. Song, S. Lee, et al., ChemSusChem 10 (2017) 3999–4003.
doi: 10.1002/cssc.201701448
X. Zhang, X. Zhu, S. Bo, et al., Nat. Commun. 13 (2022) 5337.
doi: 10.1038/s41467-022-33066-6
N. Meng, X. Ma, C. Wang, et al., ACS Nano 16 (2022) 9095–9104.
doi: 10.1021/acsnano.2c01177
J. Geng, S. Ji, M. Jin, et al., Angew. Chem. Int. Ed. 62 (2023) e202210958.
doi: 10.1002/anie.202210958
S. Zhang, J. Geng, Z. Zhao, et al., EES Catal. 1 (2023) 45–53.
doi: 10.1039/D2EY00038E
C. Liu, H. Tong, P. Wang, et al., Appl. Catal. B: Environ. 336 (2023) 122917.
doi: 10.1016/j.apcatb.2023.122917
M. Qiu, X. Zhu, S. Bo, et al., CCS Chem. (2023), doi: 10.31635/ccschem.023.202202408.
doi: 10.31635/ccschem.023.202202408
X. Wei, Y. Liu, X. Zhu, et al., Adv. Mater. 35 (2023) 2300020.
doi: 10.1002/adma.202300020
M. Sun, G. Wu, J. Jiang, et al., Angew. Chem. Int. Ed. 62 (2023) e202301957.
doi: 10.1002/anie.202301957
S. Shin, S. Sultan, Z. -X. Chen, et al., Energy Environ. Sci. 16 (2023) 2003–2013.
doi: 10.1039/D3EE00008G
N. Li, H. Gao, Z. Liu, et al., Sci. China Chem. 66 (2023) 1–8.
M. Yuan, J. Chen, Y. Bai, et al., Angew. Chem. 133 (2021) 11005–11013.
doi: 10.1002/ange.202101275
M. Yuan, J. Chen, Y. Bai, et al., Chem. Sci. 12 (2021) 6048–6058.
doi: 10.1039/D1SC01467F
M. Yuan, J. Chen, Y. Xu, et al., Energy Environ. Sci. 14 (2021) 6605–6615.
doi: 10.1039/D1EE02485J
J. Mukherjee, S. Paul, A. Adalder, et al., Adv. Funct. Mater. 32 (2022) 2200882.
doi: 10.1002/adfm.202200882
D. Jiao, Y. Dong, X. Cui, et al., J. Mater. Chem. A 11 (2023) 232–240.
doi: 10.1039/D2TA07531H
Y. Gao, J. Wang, Y. Yang, et al., Nano-Micro Lett. 15 (2023) 158.
doi: 10.1007/s40820-023-01127-0
X. Zhang, X. Zhu, S. Bo, et al., Angew. Chem. Int. Ed. 62 (2023) e202305447.
doi: 10.1002/anie.202305447
M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 387 (1995) 143–145.
doi: 10.1016/0022-0728(95)03992-P
M. Shibata, K. Yoshida, N. Furuya, Denki Kagaku Oyobi Kogyo Butsuri Kagaku 66 (1998) 584–589.
doi: 10.5796/kogyobutsurikagaku.66.584
P. Roy, A. Pramanik, P. Sarkar, J. Phys. Chem. Lett. 12 (2021) 10837–10844.
doi: 10.1021/acs.jpclett.1c03242
X. Zhu, X. Zhou, Y. Jing, et al., Nat. Commun. 12 (2021) 4080.
doi: 10.1038/s41467-021-24400-5
Z. Zhang, L. Guo, J. Du, et al., New J. Chem. 46 (2022) 5278–5287.
doi: 10.1039/D2NJ00095D
C. Zhu, Y. Geng, X. Yao, et al., Small Methods 7 (2023) 2201331.
doi: 10.1002/smtd.202201331
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Xiaoxiao Huang , Zhi-Long He , Yangpeng Chen , Lei Li , Zhenyu Yang , Chunyang Zhai , Mingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236