Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review
-
* Corresponding authors.
E-mail addresses: alexander-zhou@csu.edu.cn (L. Zhou), cyj.strive@csu.edu.cn (Y. Chen).
Citation: Jie Zhou, Quanyu Li, Xiaomeng Hu, Weifeng Wei, Xiaobo Ji, Guichao Kuang, Liangjun Zhou, Libao Chen, Yuejiao Chen. Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review[J]. Chinese Chemical Letters, ;2024, 35(8): 109143. doi: 10.1016/j.cclet.2023.109143
Z. Piao, R. Gao, Y. Liu, et al., Adv. Mater. 35 (2023) 2206009.
doi: 10.1002/adma.202206009
Q. Zhang, X. Zhang, J. Wan, et al., Nat. Energy 8 (2023) 725–735.
doi: 10.1038/s41560-023-01275-y
C. Yan, H. Li, X. Chen, et al., J. Am. Chem. Soc. 141 (2019) 9422–9429.
doi: 10.1021/jacs.9b05029
K. Long, S. Huang, H. Wang, et al., Energy Storage Mater. 58 (2023) 142–154.
doi: 10.1016/j.ensm.2023.02.039
J. Yang, R. Zhao, Y. Wang, et al., Adv. Funct. Mater. 33 (2023) 2370084.
doi: 10.1002/adfm.202370084
Q. Li, H. Wang, H. Yu, et al., Adv. Funct. Mater. 33 (2023) 2303466.
doi: 10.1002/adfm.202303466
Y. Liang, Y. Yao, Nat. Rev. Mater. 8 (2022) 109–122.
doi: 10.1038/s41578-022-00511-3
X. Yu, Z. Li, X. Wu, et al., Joule 7 (2023) 1145–1175.
doi: 10.1016/j.joule.2023.05.004
H. Li, S. Guo, H. Zhou, Energy Storage Mater. 56 (2023) 227–257.
doi: 10.1117/12.3007414
Y. Zhu, Y. Cui, Z. Xie, et al., Nat. Rev. Chem. 6 (2022) 505–517.
doi: 10.1038/s41570-022-00397-3
X. Li, X. Wang, L. Ma, et al., Adv. Energy Mater. 12 (2022) 2202068.
doi: 10.1002/aenm.202202068
S. Guo, L. Qin, T. Zhang, et al., Energy Storage Mater. 34 (2021) 545–562.
doi: 10.1016/j.ensm.2020.10.019
J. Song, K. Xu, N. Liu, et al., Mater. Today 45 (2021) 191–212.
doi: 10.3390/cancers13020191
D. Wang, Q. Li, Y. Zhao, et al., Adv. Energy Mater. 12 (2022) 2102707.
doi: 10.1002/aenm.202102707
L. Miao, Z. Guo, L. Jiao, Energy Mater. 3 (2023) 300014.
J. Yin, X. Feng, Z. Gan, et al., Energy Storage Mater. 54 (2023) 623–640.
doi: 10.1016/j.ensm.2022.11.006
M. Li, Z. Li, X. Wang, et al., Energy Environ. Sci. 14 (2021) 3796–3839.
doi: 10.1039/d1ee00030f
O. Borodin, J. Self, K.A. Persson, et al., Joule 4 (2020) 69–100.
doi: 10.1016/j.joule.2019.12.007
Z. Li, A.W. Robertson, Battery Energy 2 (2023) 20220029.
doi: 10.1002/bte2.20220029
W. Yang, Y. Yang, H. Yang, et al., ACS Energy Lett. 7 (2022) 2515–2530.
doi: 10.1021/acsenergylett.2c01152
Y. He, Y. Cui, W. Shang, et al., Chem. Eng. J. 438 (2022) 135541.
doi: 10.1016/j.cej.2022.135541
C. Meng, W. He, L. Jiang, et al., Adv. Funct. Mater. 32 (2022) 2207732.
doi: 10.1002/adfm.202207732
Z. Zhao, J. Zhao, Z. Hu, et al., Energy Environ. Sci. 12 (2019) 1938–1949.
doi: 10.1039/c9ee00596j
Y. Zhao, C. Yang, Y. Yu, Chin. Chem. Lett. 35 (2024) 108865.
doi: 10.1016/j.cclet.2023.108865
N. Zhang, F. Cheng, Y. Liu, et al., J. Am. Chem. Soc. 138 (2016) 12894–12901.
doi: 10.1021/jacs.6b05958
S. Cai, X. Chu, C. Liu, et al., Adv. Mater. 33 (2021) 2007470.
doi: 10.1002/adma.202007470
Y. Lv, M. Zhao, Y. Du, et al., Energy Environ. Sci. 15 (2022) 4748–4760.
doi: 10.1039/d2ee02687b
L. Yu, J. Huang, S. Wang, et al., Adv. Mater. 35 (2023) 2210789.
doi: 10.1002/adma.202210789
M. Xu, D.G. Ivey, W. Qu, et al., J. Power Sources. 274 (2015) 1249–1253.
doi: 10.1016/j.jpowsour.2014.10.140
S. Sen, S.E. Goodwin, P.V. Barbará, et al., ACS Appl. Polym. Mater. 3 (2021) 200–208.
doi: 10.1021/acsapm.0c01042
K. Wu, J. Cui, J. Yi, et al., ACS Appl. Mater. Interfaces 14 (2022) 34612–34619.
doi: 10.1021/acsami.2c05887
K. Wu, S. Zhan, W. Liu, et al., ACS Appl. Mater. Interfaces 15 (2023) 6839–6847.
doi: 10.1021/acsami.2c20194
Z. Xu, Z. Zhang, X. Li, et al., ACS Appl. Mater. Interfaces 15 (2023) 15574–15584.
doi: 10.1021/acsami.3c00747
Y. Liu, A. Gao, J. Hao, et al., Chem. Eng. J. 452 (2023) 139605.
doi: 10.1016/j.cej.2022.139605
H. Li, Z. Liu, G. Liang, et al., ACS Nano 12 (2018) 3140–3148.
doi: 10.1021/acsnano.7b09003
S. Lv, T. Fang, Z. Ding, et al., ACS Nano 16 (2022) 20389–20399.
doi: 10.1021/acsnano.2c06362
X. Xu, Y. Xu, J. Zhang, et al., Nano Micro Lett. 15 (2023) 56.
doi: 10.1007/s40820-023-01031-7
J. Cao, D. Zhang, X. Zhang, et al., Energy Environ. Sci. 15 (2022) 499–528.
doi: 10.1039/d1ee03377h
X. Feng, P. Li, J. Yin, et al., ACS Energy Lett. 8 (2023) 1192–1200.
doi: 10.1021/acsenergylett.2c02455
A. Bayaguud, X. Luo, Y. Fu, et al., ACS Energy Lett. 5 (2020) 3012–3020.
doi: 10.1021/acsenergylett.0c01792
Y. Sun, Z. Xu, X. Xu, et al., Energy Storage Mater. 48 (2022) 192–204.
doi: 10.3390/coatings12020192
Y. Shang, P. Kumar, U. Mittal, et al., Energy Storage Mater. 55 (2023) 117–129.
doi: 10.1016/j.ensm.2022.11.033
H. Huang, J. Yun, H. Feng, et al., Energy Storage Mater. 55 (2023) 857–866.
doi: 10.3390/en16020857
H. Wang, H. Li, Y. Tang, et al., Adv. Funct. Mater. 32 (2022) 2207898.
doi: 10.1002/adfm.202207898
T. Wen, B. Qu, S. Tan, et al., Energy Storage Mater. 55 (2023) 816–825.
doi: 10.1016/j.ensm.2022.12.041
M. Li, G. Lu, W. Zheng, et al., Adv. Funct. Mater. 33 (2023) 2214759.
doi: 10.1002/adfm.202214759
F. Wan, Y. Zhang, L. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 7062–7067.
doi: 10.1002/anie.201902679
H. Jiang, L. Tang, Y. Fu, et al., Nat. Sustain. 6 (2023) 806–815.
doi: 10.1038/s41893-023-01092-x
F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17 (2018) 543–549.
doi: 10.1038/s41563-018-0063-z
H. Lu, D. Zhang, Q. Jin, et al., Adv. Mater. 35 (2023) 2300620.
doi: 10.1002/adma.202300620
J. Wang, J. Tian, G. Liu, et al., Small Methods 7 (2023) 2300392.
doi: 10.1002/smtd.202300392
R.D. Rogers, K.R. Seddon, Science 302 (2003) 792–793.
doi: 10.1126/science.1090313
Y. Lv, Y. Xiao, L. Ma, et al., Adv. Mater. 34 (2022) 2106409.
doi: 10.1002/adma.202106409
A. Rana, A. Thakare, N. Kumar, et al., ACS Appl. Mater. Interfaces 15 (2023) 23093–23103.
doi: 10.1021/acsami.3c01310
J. Chen, W. Zhou, Y. Quan, et al., Energy Storage Mater. 53 (2022) 629–637.
doi: 10.1016/j.ensm.2022.10.004
Z. Zhao, J. Lai, D.T. Ho, et al., ACS Energy Lett. 8 (2023) 608–618.
doi: 10.1021/acsenergylett.2c02520
L. Ma, S. Chen, N. Li, et al., Adv. Mater. 32 (2020) 1908121.
doi: 10.1002/adma.201908121
D. Wang, X. Guo, Z. Chen, et al., ACS Appl. Mater. Interfaces 14 (2022) 27287–27293.
doi: 10.1021/acsami.2c06793
H. Zhang, Y. Zhong, J. Li, et al., Adv. Energy Mater. 13 (2023) 2203254.
doi: 10.1002/aenm.202203254
X. Lang, Z. Hu, C. Wang, Chin. Chem. Lett. 32 (2021) 999–1009.
doi: 10.1016/j.cclet.2020.10.005
S. Chen, Y. Ying, L. Ma, et al., Nat. Commun. 14 (2023) 2925.
doi: 10.3390/foods12152925
C. Han, W. Li, H.K. Liu, et al., Nano Energy 74 (2020) 104880.
doi: 10.1016/j.nanoen.2020.104880
J. Fu, D.U. Lee, F.M. Hassan, et al., Adv. Mater. 27 (2015) 5617–5622.
doi: 10.1002/adma.201502853
K. Leng, G. Li, J. Guo, et al., Adv. Funct. Mater. 30 (2020) 2001317.
doi: 10.1002/adfm.202001317
B. Zhang, L. Qin, Y. Fang, et al., Sci. Bull. 67 (2022) 955–962.
doi: 10.1016/j.scib.2022.01.027
W. Yang, X. Du, J. Zhao, et al., Joule 4 (2020) 1557–1574.
doi: 10.1016/j.joule.2020.05.018
X. Xie, J. Li, Z. Xing, et al., Natl. Sci. Rev. 10 (2023) nwac281.
doi: 10.1093/nsr/nwac281
C. Li, X. Xie, H. Liu, et al., Natl. Sci. Rev. 9 (2022) nwab177.
doi: 10.1093/nsr/nwab177
S.N. Banitaba, D. Semnani, E. Heydari-Soureshjani, et al., Mater. Res. Express 6 (2019) 0850d6.
doi: 10.1088/2053-1591/ab25cd
W. Prasadini, K.S. Perera, K.P. Vidanapathirana, et al., AIMS Energy 6 (2018) 566–575.
doi: 10.3934/energy.2018.4.566
Z. Shen, J. Mao, G. Yu, et al., Angew. Chem. Int. Ed. 62 (2023) e202218452.
doi: 10.1002/anie.202218452
S. Huang, F. Wan, S. Bi, et al., Angew. Chem. Int. Ed. 58 (2019) 4313–4317.
doi: 10.1002/anie.201814653
Z. Shen, Z. Tang, C. Li, et al., Adv. Energy Mater. 11 (2021) 2102055.
doi: 10.1002/aenm.202102055
A.M. Hyde, S.L. Zultanski, J.H. Waldman, et al., Org. Process Res. Dev. 21 (2017) 1355–1370.
doi: 10.1021/acs.oprd.7b00197
W. Yu, J. Ge, Y. Hu, et al., Sci. China Mater. 66 (2023) 923–931.
doi: 10.1007/s40843-022-2213-y
Y. Yang, G. Qu, H. Wei, et al., Adv. Energy Mater. 13 (2023) 2203729.
doi: 10.1002/aenm.202203729
W. Deng, Z. Xu, X. Wang, Energy Storage Mater. 52 (2022) 52–60.
doi: 10.1016/j.ensm.2022.07.032
M. Yan, C. Xu, Y. Sun, et al., Nano Energy 82 (2021) 105739.
doi: 10.1016/j.nanoen.2020.105739
H. Yu, D. Chen, Q. Li, et al., Adv. Energy Mater. 13 (2023) 2300550.
doi: 10.1002/aenm.202300550
C. Huang, X. Zhao, S. Liu, et al., Adv. Mater. 33 (2021) 2100445.
doi: 10.1002/adma.202100445
Y. Gao, M. Wang, H. Wang, et al., J. Energy Chem. 84 (2023) 62–72.
doi: 10.1016/j.jechem.2023.05.021
Z. Liu, R. Wang, Q. Ma, et al., Adv. Funct. Mater. 33 (2023) 2214538.
R. Qin, Y. Wang, M. Zhang, et al., Nano Energy 80 (2021) 105478.
doi: 10.1016/j.nanoen.2020.105478
Z. Miao, Q. Liu, W. Wei, et al., Nano Energy 97 (2022) 107145.
doi: 10.1016/j.nanoen.2022.107145
T. Wei, Y. Ren, Y. Wang, et al., ACS Nano 17 (2023) 3765–3775.
doi: 10.1021/acsnano.2c11516
Y. Liu, Y. An, L. Wu, et al., ACS Nano 17 (2023) 552–560.
doi: 10.1021/acsnano.2c09317
N. Wang, Y. Yang, X. Qiu, et al., ChemSusChem 13 (2020) 5556–5564.
doi: 10.1002/cssc.202001750
J. Lee, B. Hwang, M. -S. Park, et al., Electrochim. Acta 199 (2016) 164–171.
S. Hosseini, S.J. Han, A. Arponwichanop, et al., Sci. Rep. 8 (2018) 11273.
doi: 10.1038/s41598-018-29630-0
C. Han, Y. Yao, S. Lv, et al., Optik (Stuttg) 155 (2018) 307–314.
doi: 10.1016/j.ijleo.2017.10.164
P. Sun, L. Ma, W. Zhou, et al., Angew. Chem. 133 (2021) 18395–18403.
doi: 10.1002/ange.202105756
M. Liang, H. Zhou, Q. Huang, et al., J. Appl. Electrochem. 41 (2011) 991–997.
doi: 10.1007/s10800-011-0328-6
B. Liu, T. Wu, F. Ma, et al., ACS Appl. Mater. Interfaces 14 (2022) 18431–18438.
doi: 10.1021/acsami.2c00949
J. Xie, Z. Liang, Y.C. Lu, Nat. Mater. 19 (2020) 1006–1011.
doi: 10.1038/s41563-020-0667-y
Y. Jin, K.S. Han, Y. Shao, et al., Adv. Funct. Mater. 30 (2020) 2003932.
doi: 10.1002/adfm.202003932
V.K. Nartey, L. Binder, K. Kordesch, J. Power Sources 52 (1994) 217–222.
doi: 10.1016/0378-7753(94)02010-8
H. Zhou, Q. Huang, M. Liang, et al., Mater. Chem. Phys. 128 (2011) 214–219.
doi: 10.1504/IJISTA.2011.039023
Q. Ma, R. Gao, Y. Liu, et al., Adv. Mater. 34 (2022) 2207344.
doi: 10.1002/adma.202207344
J. Hao, L. Yuan, C. Ye, et al., Angew. Chem. Int. Ed. 60 (2021) 7366–7375.
doi: 10.1002/anie.202016531
N. Chang, T. Li, R. Li, et al., Energy Environ. Sci. 13 (2020) 3527–3535.
doi: 10.1039/d0ee01538e
Q. Nian, X. Zhang, Y. Feng, et al., ACS Energy Lett. 6 (2021) 2174–2180.
doi: 10.1021/acsenergylett.1c00833
L. Cao, D. Li, E. Hu, et al., J. Am. Chem. Soc. 142 (2020) 21404–21409.
doi: 10.1021/jacs.0c09794
Y. Ou, Z. Cai, J. Wang, et al., EcoMat 4 (2022) e12167.
doi: 10.1002/eom2.12167
N. Wang, X. Chen, H. Wan, et al., Adv. Funct. Mater. 33 (2023) 2300795.
doi: 10.1002/adfm.202300795
P. Xiao, Y. Wu, J. Fu, et al., ACS Energy Lett. 8 (2023) 31–39.
doi: 10.1021/acsenergylett.2c02339
X. Gan, J. Tang, X. Wang, et al., Energy Storage Mater. 59 (2023) 102769.
doi: 10.1016/j.ensm.2023.102769
C. Li, R. Kingsbury, L. Zhou, et al., ACS Energy Lett. 7 (2022) 533–540.
doi: 10.1021/acsenergylett.1c02514
R. Zhao, H. Wang, H. Du, et al., Nat. Commun. 13 (2022) 3252.
doi: 10.1038/s41467-022-30939-8
F. Wan, L. Zhang, X. Dai, et al., Nat. Commun. 9 (2018) 1656.
doi: 10.1038/s41467-018-04060-8
H. Tian, G. Feng, Q. Wang, et al., Nat. Commun. 13 (2022) 7922.
doi: 10.1038/s41467-022-35618-2
L. Yang, T. Zhang, S. Liu, et al., Small Methods (2023), doi: 10.1002/smtd.202300009.
doi: 10.1002/smtd.202300009
H. Guo, Z. Shao, Y. Zhang, et al., J. Colloid Interface Sci. 608 (2022) 1481–1488.
doi: 10.1016/j.jcis.2021.10.085
Y. Zhang, H. Li, S. Huang, et al., Nano-Micro Lett. 12 (2020) 60.
doi: 10.1007/s40820-020-0385-7
V. Soundharrajan, B. Sambandam, S. Kim, et al., Energy Storage Mater. 28 (2020) 407–417.
doi: 10.1016/j.ensm.2019.12.021
H.Y. Wu, X. Gu, P. Huang, et al., J. Mater. Chem. A 9 (2021) 7025–7033.
doi: 10.1039/d1ta00256b
C. Yang, J. Xia, C. Cui, et al., Nat. Sustain. 6 (2023) 325–335.
doi: 10.1038/s41893-022-01028-x
H. Wang, A. Zhou, X. Hu, et al., ACS Nano 17 (2023) 11946–11956.
doi: 10.1021/acsnano.3c04155
R. Chen, W. Zhang, Q. Huang, et al., Nano-Micro Lett. 15 (2023) 81-81.
doi: 10.1007/s40820-023-01050-4
X. Zhao, N. Dong, M. Yan, et al., ACS Appl. Mater. Interfaces 15 (2023) 4053–4060.
doi: 10.1021/acsami.2c19022
C. Li, A. Shyamsunder, A.G. Hoane, et al., Joule 6 (2022) 1103–1120.
doi: 10.1016/j.joule.2022.04.017
H. Du, Y. Dong, Q. Li, et al., Adv. Mater. 35 (2023) 2210055.
doi: 10.1002/adma.202210055
X. Xu, H. Su, J. Zhang, et al., ACS Energy Lett. 7 (2022) 4459–4468.
doi: 10.1021/acsenergylett.2c02236
X. Zeng, J. Liu, J. Mao, et al., Adv. Energy Mater. 10 (2020) 1904163.
doi: 10.1002/aenm.201904163
S.J. Zhang, J. Hao, Y. Zhu, et al., Angew. Chem. Int. Ed. 62 (2023) e202301570.
doi: 10.1002/anie.202301570
C.J. Lan, C.Y. Lee, T.S. Chin, Electrochim. Acta 52 (2007) 5407–5416.
doi: 10.1016/j.electacta.2007.02.063
A. Pei, G. Zheng, F. Shi, et al., Nano Lett. 17 (2017) 1132–1139.
doi: 10.1021/acs.nanolett.6b04755
W. Yuan, X. Nie, G. Ma, et al., Angew. Chem. Int. Ed. 62 (2023) e202218386.
doi: 10.1002/anie.202218386
J. Yang, H. Yan, H. Hao, et al., ACS Energy Lett. 7 (2022) 2331–2339.
doi: 10.1021/acsenergylett.2c00560
X. Fan, X. Ji, L. Chen, et al., Nat. Energy. 4 (2019) 882–890.
doi: 10.1038/s41560-019-0474-3
N. Patil, C. Cruz, D. Ciurduc, et al., Adv. Energy Mater. 11 (2021) 2100939.
doi: 10.1002/aenm.202100939
Q. Zhang, Y. Ma, Y. Lu, et al., Nat. Commun. 11 (2020) 4463.
doi: 10.1038/s41467-020-18284-0
R. Wang, M. Yao, M. Yang, et al., Proc. Natl. Acad. Sci. U. S. A. 120 (2023) e2221980120.
doi: 10.1073/pnas.2221980120
C. Zhang, W. Shin, L. Zhu, et al., Carbon Energy 3 (2021) 339–348.
doi: 10.1002/cey2.70
L. Cao, D. Li, F.A. Soto, et al., Angew. Chem. Int. Ed. 60 (2021) 18845–18851.
doi: 10.1002/anie.202107378
A. Clarisza, H.K. Bezabh, S.K. Jiang, et al., ACS Appl. Mater. Interfaces 14 (2022) 36644–36655.
doi: 10.1021/acsami.2c09040
S. Zhang, N. Yu, S. Zeng, et al., J. Mater. Chem. A 6 (2018) 12237–12243.
doi: 10.1039/c8ta04298e
M. Qiu, P. Sun, A. Qin, et al., Energy Storage Mater. 49 (2022) 463–470.
doi: 10.1016/j.ensm.2022.04.018
M. Liu, L. Yao, Y. Ji, et al., Nano Lett. 23 (2023) 541–549.
doi: 10.1021/acs.nanolett.2c03919
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Xiao Zhu , Yanbing Mo , Jiawei Chen , Gaopan Liu , Yonggang Wang , Xiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Kezhen Qi , Shu-yuan Liu , Ruchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785