Hydrothermal liquefaction of biomass for jet fuel precursors: A review
-
* Corresponding author.
E-mail address: liu_ziyu@buaa.edu.cn (Z. Liu).
Citation: Shengfei Dong, Ziyu Liu, Xiaoyi Yang. Hydrothermal liquefaction of biomass for jet fuel precursors: A review[J]. Chinese Chemical Letters, ;2024, 35(8): 109142. doi: 10.1016/j.cclet.2023.109142
C. Zhang, X. Hui, Y. Lin, C. Sung, Renew. Sustain. Energy Rev. 54 (2016) 120–138.
doi: 10.1016/j.rser.2015.09.056
O. Balli, Energ. Convers. Manage. 266 (2022) 115813.
doi: 10.1016/j.enconman.2022.115813
F. Guo, J. Zhao, L. A, X. Yang, Bioresource Technol. 221 (2016) 350–357.
doi: 10.1016/j.biortech.2016.09.044
L. Leng, W. Zhang, H. Peng, et al., Chem. Eng. J. 401 (2020) 126030.
doi: 10.1016/j.cej.2020.126030
S.S. Toor, L. Rosendahl, A. Rudolf, Energy 36 (2011) 2328–2342.
doi: 10.1016/j.energy.2011.03.013
A.R.K. Gollakota, N. Kishore, S. Gu, Renew. Sustain. Energy Rev. 81 (2018) 1378–1392.
doi: 10.1016/j.rser.2017.05.178
Y. Li, S. Lian, D. Tong, et al., Appl. Energ. 88 (2011) 3313–3317.
doi: 10.1016/j.apenergy.2010.12.057
C. Li, X. Zhao, A. Wang, et al., Chem. Rev. 115 (2015) 11559–11624.
doi: 10.1021/acs.chemrev.5b00155
J.N. Chheda, J.A. Dumesic, Catal. Today 123 (2007) 59–70.
doi: 10.1016/j.cattod.2006.12.006
S.V. Vassilev, D. Baxter, L.K. Andersen, et al., Fuel 94 (2012) 1–33.
doi: 10.1016/j.fuel.2011.09.030
T. Abbasi, S.A. Abbasi, Renew. Sustain. Energy Rev. 14 (2010) 919–937.
doi: 10.1016/j.rser.2009.11.006
J. Yanik, S. Ebale, A. Kruse, et al., Fuel 86 (2007) 2410–2415.
doi: 10.1016/j.fuel.2007.01.025
A. Demirbas, Energ. Convers. Manage. 50 (2009) 2782–2801.
doi: 10.1016/j.enconman.2009.06.035
S. Naik, V.V. Goud, P.K. Rout, et al., Renew. Energ. 35 (2010) 1624–1631.
doi: 10.1016/j.renene.2009.08.033
R. Mariscal, P. Maireles-Torres, M. Ojeda, et al., Energ. Environ. Sci. 9 (2016) 1144–1189.
doi: 10.1039/C5EE02666K
A. Hendry, M. Åhlén, T. Fernandes, et al., Bioresource Technol. 317 (2020) 124008.
doi: 10.1016/j.biortech.2020.124008
Y. Chen, F. Liu, N. Ren, S. Ho, Chin. Chem. Lett. 31 (2020) 2591–2602.
doi: 10.1016/j.cclet.2020.08.019
C. Zhang, X. Tang, X. Yang, J. Clean. Prod. 198 (2018) 1224–1231.
doi: 10.1016/j.jclepro.2018.07.114
L. Xu, D.W.F. Wim Brilman, J.A.M. Withag, et al., Bioresource Technol. 102 (2011) 5113–5122.
doi: 10.1016/j.biortech.2011.01.066
S. Zou, Y. Wu, M. Yang, et al., Energy Environ. Sci. 3 (2010) 1073–1078.
doi: 10.1039/C002550J
X. Tang, C. Zhang, Z. Li, X. Yang, Bioresource Technol. 202 (2016) 8–14.
doi: 10.1016/j.biortech.2015.11.076
S.S. Toor, H. Reddy, S. Deng, et al., Bioresource Technol. 131 (2013) 413–419.
doi: 10.1016/j.biortech.2012.12.144
H. Li, Z. Liu, Y. Zhang, et al., Bioresource Technol. 154 (2014) 322–329.
doi: 10.1016/j.biortech.2013.12.074
S. Tang, Z. Shi, X. Tang, X. Yang, Green Chem. 21 (2019) 3413–3423.
doi: 10.1039/C9GC00673G
D. López-González, M. Fernandez-Lopez, J.L. Valverde, L. Sanchez-Silva, Appl. Energ. 114 (2014) 227–237.
doi: 10.1016/j.apenergy.2013.09.055
P. Biller, A.B. Ross, Bioresource Technol. 102 (2011) 215–225.
doi: 10.1016/j.biortech.2010.06.028
Z. Xu, W. Li, Z. Du, et al., Bioresource Technol. 198 (2015) 764–771.
doi: 10.1016/j.biortech.2015.09.104
P. Bhaumik, P.L. Dhepe, RSC Adv. 4 (2014) 26215.
doi: 10.1039/c4ra04119d
R. Xing, W. Qi, G.W. Huber, Energ. Environ. Sci. 4 (2011) 2193–2205.
doi: 10.1039/c1ee01022k
X. Li, R. Xu, Q. Liu, et al., Ind. Crop. Prod. 141 (2019) 111759.
doi: 10.1016/j.indcrop.2019.111759
H. Du, X. Ma, M. Jiang, Z.C. Zhang, Chin. Chem. Lett. 33 (2022) 912–915.
doi: 10.1016/j.cclet.2021.06.082
K. Yan, G. Wu, T. Lafleur, C. Jarvis, Renew. Sustain. Energy Rev. 38 (2014) 663–676.
doi: 10.1016/j.rser.2014.07.003
H. Choudhary, S. Nishimura, K. Ebitani, Appl. Catal. A 458 (2013) 55–62.
doi: 10.1016/j.apcata.2013.03.033
H. Guo, G. Yin, J. Phys. Chem. C 115 (2011) 17516–17522.
doi: 10.1021/jp2054712
W. Xu, S. Zhang, J. Lu, Q. Cai, Environ. Prog. Sustain. 36 (2017) 690–695.
doi: 10.1002/ep.12489
L. Zhang, Y. Tian, Y. Wang, L. Dai, Chin. Chem. Lett. 32 (2021) 2233–2238.
doi: 10.1016/j.cclet.2020.12.030
Z. Jiang, Y. Zeng, D. Hu, et al., Green Chem. 25 (2023) 871–892.
doi: 10.1039/D2GC03444A
X. Zhai, X. Wang, Y. Ding, Y. Zhou, Chin. Chem. Lett. 31 (2020) 1197–1200.
doi: 10.1016/j.cclet.2019.07.017
N. Shi, Q. Liu, Q. Zhang, et al., Green Chem. 15 (2013) 1967.
doi: 10.1039/c3gc40667a
Y. Chen, Y. Wu, P. Zhang, et al., Bioresource Technol. 124 (2012) 190–198.
doi: 10.1016/j.biortech.2012.08.013
C. Gai, Y. Zhang, W. Chen, et al., Energ. Convers. Manage. 96 (2015) 330–339.
doi: 10.1016/j.enconman.2015.02.056
H. Pińkowska, E. Oliveros, Ind. Eng. Chem. Res. 53 (2014) 1320–1326.
doi: 10.1021/ie403451b
H. Di Domenico Ziero, L.S. Buller, A. Mudhoo, et al., J. Environ. Chem. Eng. 8 (2020) 104406.
doi: 10.1016/j.jece.2020.104406
C. Zhang, X. Tang, L. Sheng, X. Yang, Green Chem. 18 (2016) 2542–2553.
doi: 10.1039/C5GC02953H
B. Zhao, Z. Shi, X. Yang, Ind. Eng. Chem. Res. 56 (2017) 6378–6390.
doi: 10.1021/acs.iecr.7b01405
L. Sheng, X. Wang, X. Yang, Bioresource Technol. 247 (2018) 14–20.
doi: 10.1016/j.biortech.2017.08.011
H. Mansilla, J. Baeza, S. Urzua, et al., Bioresource Technol. 66 (1998) 189–193.
doi: 10.1016/S0960-8524(98)00088-1
A. Avci, B.C. Saha, G.J. Kennedy, M.A. Cotta, Ind. Crop. Prod. 50 (2013) 478–484.
doi: 10.1016/j.indcrop.2013.07.055
B. Girisuta, L.P.B.M. Janssen, H.J. Heeres, Ind. Eng. Chem. Res. 46 (2007) 1696–1708.
doi: 10.1021/ie061186z
J.N. Chheda, Y. Román-Leshkov, J.A. Dumesic, Green Chem. 9 (2007) 342–350.
doi: 10.1039/B611568C
I. Kaur, Y. Ni, Sep. Purif. Technol. 146 (2015) 121–126.
doi: 10.1016/j.seppur.2015.03.034
S. Kang, J. Fu, G. Zhang, Renew. Sustain. Energy Rev. 94 (2018) 340–362.
doi: 10.1016/j.rser.2018.06.016
Z. Yang, W. Yunhong, D. Lihong, et al., J. Cellulose Sci. Technol. (2005) 28–44.
L. Liu, J. Sun, M. Li, et al., Bioresource Technol. 100 (2009) 5853–5858.
doi: 10.1016/j.biortech.2009.06.040
S. Zu, W. Li, M. Zhang, et al., Bioresource Technol. 152 (2014) 364–370.
doi: 10.1016/j.biortech.2013.11.034
X. Hou, G. Feng, M. Ye, et al., Bioresource Technol. 238 (2017) 139–146.
doi: 10.1016/j.biortech.2017.04.027
L. Chen, R. Chen, S. Fu, A.C.S. Sustain. Chem. Eng. 3 (2015) 1794–1800.
doi: 10.1021/acssuschemeng.5b00377
T. Zhang, W. Li, Z. Xu, et al., Bioresource Technol. 209 (2016) 108–114.
doi: 10.1016/j.biortech.2016.02.108
L. Zhang, H. Yu, P. Wang, et al., Bioresource Technol. 130 (2013) 110–116.
doi: 10.1016/j.biortech.2012.12.018
R. Xing, A.V. Subrahmanyam, H. Olcay, et al., Green Chem. 12 (2010) 1933–1946.
doi: 10.1039/c0gc00263a
K. Dussan, B. Girisuta, M. Lopes, et al., ChemSusChem 8 (2015) 1411–1428.
doi: 10.1002/cssc.201403328
Y. Zhao, H. Xu, K. Lu, et al., Ind. Eng. Chem. Res. 58 (2019) 17088–17097.
doi: 10.1021/acs.iecr.9b03420
S.L. Guenic, D. Gergela, C. Ceballos, et al., Molecules 21 (2016) 1102.
doi: 10.3390/molecules21081102
W. Hongsiri, B. Danon, W. de Jong, Int. J. Energy Environ. Eng. 6 (2015) 21–30.
doi: 10.1007/s40095-014-0146-9
L. Si, W. Qiong, L. Xun, et al., Chem. Ind. Forest Prod. 39 (2019) 13–22.
H. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Science 316 (2007) 1597–1600.
doi: 10.1126/science.1141199
A. Jain, A.M. Shore, S.C. Jonnalagadda, et al., Appl. Catal. A 489 (2015) 72–76.
doi: 10.1016/j.apcata.2014.10.020
K. Saravanan, K.S. Park, S. Jeon, J.W. Bae, ACS Omega 3 (2018) 808–820.
doi: 10.1021/acsomega.7b01357
Q. Hou, M. Zhen, W. Li, et al., Appl. Catal. B 253 (2019) 1–10.
doi: 10.1016/j.apcatb.2019.04.003
K. Li, M. Du, P. Ji, Acs Sustain. Chem. Eng. 6 (2018) 5636–5644.
doi: 10.1021/acssuschemeng.8b00745
M. Li, W. Li, Q. Liu, et al., Bioresources 11 (2016) 8239–8256.
H. Chen, B. Yu, S. Jin, Bioresource Technol. 102 (2011) 3568–3570.
doi: 10.1016/j.biortech.2010.10.018
I. Mongkolpichayarak, D. Jiraroj, W. Anutrasakda, et al., J. Catal. 405 (2022) 373–384.
doi: 10.1016/j.jcat.2021.12.019
Z. Sun, Y. Xie, C. Wei, et al., J. Mol. Liq. 383 (2023) 122132.
doi: 10.1016/j.molliq.2023.122132
C. Gong, X. Meng, C. Jin, et al., Ind. Crop. Prod. 192 (2023) 115985.
doi: 10.1016/j.indcrop.2022.115985
G. Liu, Y. Xie, C. Wei, et al., Biomass Bioenergy 158 (2022) 106363.
doi: 10.1016/j.biombioe.2022.106363
Q. Ma, M. Guan, D. Fan, E. Jiang, Fuel 324 (2022) 124678.
doi: 10.1016/j.fuel.2022.124678
L. Xu, X. Pan, N. Wu, et al., Catal. Lett. 154 (2024) 674–684.
doi: 10.1007/s10562-023-04320-3
B. Yao, Q. Kang, J. Fu, et al., Biomass Bioenergy 168 (2023) 106658.
doi: 10.1016/j.biombioe.2022.106658
Z. Guo, J. Mao, Q. Zhang, F. Xu, Ind. Crop. Prod. 188 (2022) 115453.
doi: 10.1016/j.indcrop.2022.115453
N.T. Tinh, D.K. Dan, N.T. Phuong, et al., Fuel 343 (2023) 127870.
doi: 10.1016/j.fuel.2023.127870
H. Ren, X. Yue, W. Dong, Carbohyd. Res. 522 (2022) 108675.
doi: 10.1016/j.carres.2022.108675
N. Mohamad, N. Abd-Talib, T.K. Yong, Mater. Today 31 (2020) 116–121.
X. Li, H. Xu, W. Hu, et al., Ind. Crop. Prod. 184 (2022) 115019.
doi: 10.1016/j.indcrop.2022.115019
P. Hu, Y. Hu, H. Li, et al., Carbohyd. Polym. 309 (2023) 120692.
doi: 10.1016/j.carbpol.2023.120692
Y. Guo, T. Yeh, W. Song, et al., Renew. Sustain. Energy Rev. 48 (2015) 776–790.
doi: 10.1016/j.rser.2015.04.049
A. Dimitriadis, S. Bezergianni, Renew. Sustain. Energy Rev. 68 (2017) 113–125.
doi: 10.1016/j.rser.2016.09.120
T.M. Brown, P. Duan, P.E. Savage, Energ. Fuel. 24 (2010) 3639–3646.
doi: 10.1021/ef100203u
L.G. Alba, C. Torri, C. Samorì, et al., Energ. Fuel. 26 (2012) 642–657.
doi: 10.1021/ef201415s
S. Dong, X. Huang, X. Yang, Fuel 324 (2022) 124641.
doi: 10.1016/j.fuel.2022.124641
Z. Shuping, W. Yulong, Y. Mingde, et al., Energy 35 (2010) 5406–5411.
doi: 10.1016/j.energy.2010.07.013
D. Zhou, L. Zhang, S. Zhang, et al., Energ. Fuel. 24 (2010) 4054–4061.
doi: 10.1021/ef100151h
U. Jena, K.C. Das, J.R. Kastner, Bioresource Technol. 102 (2011) 6221–6229.
doi: 10.1016/j.biortech.2011.02.057
J.L. Garcia-Moscoso, A. Teymouri, S. Kumar, Ind. Eng. Chem. Res. 54 (2015) 2048–2058.
doi: 10.1021/ie5047279
X. Tang, C. Zhang, X. Yang, J. Clean. Prod. 258 (2020) 120660.
doi: 10.1016/j.jclepro.2020.120660
L. Leng, P. Han, X. Yuan, et al., Energy 153 (2018) 1061–1072.
doi: 10.1016/j.energy.2018.04.087
L. Leng, X. Yuan, X. Chen, et al., Energy 82 (2015) 218–228.
doi: 10.1016/j.energy.2015.01.032
H. Huang, X. Yuan, Prog. Energ. Combust. 49 (2015) 59–80.
doi: 10.1016/j.pecs.2015.01.003
Y. Hu, L. Qi, S. Feng, et al., Fuel 238 (2019) 240–247.
doi: 10.1016/j.fuel.2018.10.124
J. Zhang, Y. Zhang, Energ. Fuel. 28 (2014) 5178–5183.
doi: 10.1021/ef501040j
X. Peng, X. Ma, Y. Lin, et al., Energ. Convers. Manage. 117 (2016) 43–53.
doi: 10.1016/j.enconman.2016.03.029
R. Li, Z. Ma, T. Yang, et al., J. Supercrit. Fluid. 138 (2018) 115–123.
doi: 10.1016/j.supflu.2018.04.011
Y. Meng, G. Bao, H. Wang, et al., Int. J. Energ. Res. 41 (2017) 1460–1473.
doi: 10.1002/er.3727
B. Jin, P. Duan, Y. Xu, et al., Bioresource Technol. 149 (2013) 103–110.
doi: 10.1016/j.biortech.2013.09.045
W. Yang, X. Li, S. Liu, L. Feng, Energ. Convers. Manage. 87 (2014) 938–945.
doi: 10.1016/j.enconman.2014.08.004
P. Duan, P.E. Savage, Ind. Eng. Chem. Res. 50 (2011) 52–61.
doi: 10.1021/ie100758s
Y. Xu, X. Zheng, H. Yu, X. Hu, Bioresource Technol. 156 (2014) 1–5.
doi: 10.1016/j.biortech.2014.01.010
D. López Barreiro, S. Riede, U. Hornung, et al., Algal Res. 12 (2015) 206–212.
doi: 10.1016/j.algal.2015.08.025
C. Miao, M. Chakraborty, T. Dong, et al., Bioresource Technol. 164 (2014) 106–112.
doi: 10.1016/j.biortech.2014.04.059
S. Wang, S. Zhao, X. Cheng, et al., Bioresource Technol. 319 (2021) 124176.
doi: 10.1016/j.biortech.2020.124176
D. López Barreiro, C. Samorì, G. Terranella, et al., Bioresource Technol. 174 (2014) 256–265.
doi: 10.1016/j.biortech.2014.10.031
T. Xiaohan, Y. Xiaoyi, CIESC J. 70 (2019) 4356–4362.
J. Akhtar, N.A.S. Amin, Renew. Sustain. Energy Rev. 15 (2011) 1615–1624.
doi: 10.1016/j.rser.2010.11.054
C. XU, T. Etcheverry, Fuel 87 (2008) 335–345.
doi: 10.1016/j.fuel.2007.05.013
S. Yin, R. Dolan, M. Harris, Z. Tan, Bioresource Technol. 101 (2010) 3657–3664.
doi: 10.1016/j.biortech.2009.12.058
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Si-Hua Liu , Jun-Hao Zhou , Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Xuexia Lin , Yihui Zhou , Jiafu Hong , Xiaofeng Wei , Bin Liu , Chong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172