A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide
-
* Corresponding authors.
E-mail addresses: yk.zhao@spmcatalyst.com (Y. Zhao), zcy_peace@hust.edu.cn (C. Zang).
Citation: Yatian Deng, Dao Wang, Jinglan Cheng, Yunkun Zhao, Zongbao Li, Chunyan Zang, Jian Li, Lichao Jia. A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide[J]. Chinese Chemical Letters, ;2024, 35(8): 109141. doi: 10.1016/j.cclet.2023.109141
J. Hwang, R.R. Rao, L. Giordano, et al., Science 358 (2017) 751–756.
doi: 10.1126/science.aam7092
R.M. Bullock, J.G. Chen, L. Gagliardi, et al., Science 369 (2020) eabc3183.
doi: 10.1126/science.abc3183
H.A. Gasteiger, N.M. Markovic, Science 324 (2009) 48–49.
doi: 10.1126/science.1172083
R.E. Smalley, MRS Bull. 30 (2005) 412–417.
doi: 10.1557/mrs2005.124
P.C.K. Vesborg, T.F. Jaramillo, RSC Adv. 2 (2012) 7933.
doi: 10.1039/c2ra20839c
Z. Chen, X. Liu, K. Cho, et al., ACS Catal. 5 (2015) 4913–4926.
doi: 10.1021/acscatal.5b00249
K.J. May, C.E. Carlton, K.A. Stoerzinger, et al., J. Phys. Chem. Lett. 3 (2012) 3264–3270.
doi: 10.1021/jz301414z
M. Risch, A. Grimaud, K.J. May, et al., J. Phys. Chem. C 117 (2013) 8628–8635.
doi: 10.1021/jp3126768
C.H. Kim, G. Qi, K. Dahlberg, et al., Science 327 (2010) 1624–1627.
doi: 10.1126/science.1184087
W. Wang, G. McCool, N. Kapur, et al., Science 337 (2012) 832–835.
doi: 10.1126/science.1225091
Y. Li, X. Zhang, H. Li, et al., Nano Energy 27 (2016) 8–16.
doi: 10.1016/j.nanoen.2016.06.033
J.A. Alonso, M.T. Casais, M.J. Martinez-Lope, et al., J. Solid State Chem. 129 (1997) 105–112.
doi: 10.1006/jssc.1996.7237
J.A. Alonso, M.T. Casais, M.J. Martinez-Lope, et al., J. Phys. Condens. Matter. 9 (1997) 8515–8526.
doi: 10.1088/0953-8984/9/40/017
I. Kagomiya, K. Kohn, T. Uchiyama, Ferroelectrics 280 (2002) 131–143.
doi: 10.1080/00150190214799
G. Zhu, P. Liu, M. Hojamberdiev, et al., Mater. Chem. Phys. 118 (2009) 467–472.
doi: 10.1016/j.matchemphys.2009.08.019
C. Dong, Z. Liu, J. Liu, et al., Small 13 (2017) 1603903.
doi: 10.1002/smll.201603903
R.X. Fischer, H. Schneider, The mullite-type family of crystal structures, Mullite R H. Schneider, S. Komarneni (Eds.), E-Publishing Inc., Germany, 2005, pp. 16–18.
T. Fujita, K. Kohn, Ferroelectrics 219 (1998) 155–160.
doi: 10.1080/00150199808213511
M. Tachibana, K. Akiyama, H. Kawaji, et al., Phys. Rev. B 72 (2005) 224425.
doi: 10.1103/PhysRevB.72.224425
Y. Noda, H. Kimura, M. Fukunaga, et al., J. Phys. Condens. Matter. 20 (2008) 434206.
doi: 10.1088/0953-8984/20/43/434206
G. Yahia, F. Damay, S. Chattopadhyay, et al., Phys. Rev. B 95 (2017) 184112.
doi: 10.1103/PhysRevB.95.184112
Y. Ishii, S. Horio, H. Yamamoto, et al., Phys. Rev. B 98 (2018) 174428.
doi: 10.1103/PhysRevB.98.174428
S. Mansouri, S. Jandl, M. Balli, et al., Phys. Rev. B 100 (2019) 085147.
doi: 10.1103/PhysRevB.100.085147
T. Hsu, C. Yang, C. Chu, et al., Chin. J. Phys. 62 (2019) 368–373.
doi: 10.1016/j.cjph.2019.10.012
Y. Yun, L. Kampschulte, M. Li, et al., J. Phys. Chem. C 111 (2007) 13951–13956.
doi: 10.1021/jp074214f
L. Wang, A. Teleki, S.E. Pratsinis, et al., Chem. Mater. 20 (2008) 4794–4796.
doi: 10.1021/cm800761e
J. Ahmad, S.H. Bukhari, J.A. Khan, et al., Phys. Scr. 95 (2020) 115803.
doi: 10.1088/1402-4896/abbcf5
H. Li, Z. Yang, J. Liu, et al., Appl. Phys. Lett. 109 (2016) 211903.
doi: 10.1063/1.4968786
C. Zhao, M. Yu, Z. Yang, et al., Nano Energy 51 (2018) 91–101.
doi: 10.1016/j.nanoen.2018.06.039
S. Chen, H. Li, Y. Hao, et al., Catal. Sci. Technol. 10 (2020) 1941–1951.
doi: 10.1039/C9CY02522G
A.M. Yankin, O.M. Fedorova, V.F. Balakirev, et al., Russ. J. Phys. Chem. A 81 (2007) 139–142.
doi: 10.1134/S0036024407010244
A.M. Yankin, V.F. Balakirev, O.M. Fedorova, et al., Russ. J. Phys. Chem. 80 (2006) 1714–1716.
doi: 10.1134/S0036024406110033
C. Li, S. Thampy, Y. Zheng, et al., J. Phys. Condens. Matter 28 (2016) 125602.
doi: 10.1088/0953-8984/28/12/125602
P. Zhao, P. Yu, Z. Feng, et al., RSC Adv. 6 (2016) 65950–65959.
doi: 10.1039/C6RA12313A
J.K. Nørskov, F. Abild-Pedersen, F. Studt, et al., PNAS 108 (2011) 937–943.
doi: 10.1073/pnas.1006652108
H. Li, W. Wang, X. Qian, et al., Catal. Sci. Technol. 6 (2016) 3971–3975.
doi: 10.1039/C5CY01798J
Y. Zheng, S. Thampy, N. Ashburn, et al., J. Am. Chem. Soc. 141 (2019) 10722–10728.
doi: 10.1021/jacs.9b03334
L. Wang, H. Li, J. Liu, et al., J. Mater. Chem. A 9 (2021) 380–389.
doi: 10.1039/D0TA09537K
J. Liu, M. Yu, X. Wang, et al., J. Mater. Chem. A 5 (2017) 20922–20931.
doi: 10.1039/C7TA02905E
W. Ding, X. Gu, H. Su, et al., J. Phys. Chem. C 118 (2014) 12216–12223.
doi: 10.1021/jp503745c
B. Shan, Y. Zhao, J. Hyun, et al., J. Phys. Chem. C 113 (2009) 6088–6092.
doi: 10.1021/jp8094962
L. Lin, P. Shi, L. Yao, et al., Nanotechnology 33 (2022) 205504.
doi: 10.1088/1361-6528/ac4f19
D.C. Sesu, P. Marbaniang, S. Ingavale, A.C. Manohar, B. Kakade, ChemistrySelect 5 (2020) 306–311.
doi: 10.1002/slct.201904127
P. Mars, D.W. van Krevelen, Chem. Eng. Sci. 3 (1954) 41–59.
doi: 10.1016/S0009-2509(54)80005-4
Y. Zhang, G. Qin, J. Zheng, et al., Mol. Catal. 540 (2023) 113057.
doi: 10.1016/j.mcat.2023.113057
Y. Hosono, H. Saito, T. Higo, et al., J. Phys. Chem. C 125 (2021) 11411–11418.
doi: 10.1021/acs.jpcc.1c02855
C. Wang, X. Gu, H. Yan, et al., ACS Catal. 7 (2017) 887–891.
doi: 10.1021/acscatal.6b02685
M. Zhao, M. Shen, J. Wang, J. Catal. 248 (2007) 258–267.
doi: 10.1016/j.jcat.2007.03.005
F. Chen, D. Liu, J. Zhang, et al., J. Phys. Chem. Chem. Phys. 14 (2012) 16573–16580.
doi: 10.1039/c2cp41281k
S. Thampy, N. Ashburn, K. Cho, et al., Adv. Energy Sustain. Res. 2 (2021) 2000075.
doi: 10.1002/aesr.202000075
J. Rossmeisl, Z.W. Qu, H. Zhu, et al., J. Electroanal. Chem. 607 (2007) 83–89.
doi: 10.1016/j.jelechem.2006.11.008
I.C. Man, H. Su, F. Calle-Vallejo, et al., ChemCatChem 3 (2011) 1159–1165.
doi: 10.1002/cctc.201000397
X. Rong, J. Parolin, A.M. Kolpak, ACS Catal. 6 (2016) 1153–1158.
doi: 10.1021/acscatal.5b02432
J.T. Mefford, X. Rong, A.M. Abakumov, et al., Nat. Commun. 7 (2016) 11053.
doi: 10.1038/ncomms11053
A. Grimaud, W.T. Hong, Y. Shao-Horn, J.M. Tarascon, Nat. Mater. 15 (2016) 121–126.
doi: 10.1038/nmat4551
J. Hwang, R.R. Rao, L. Giordano, et al., Science 358 (2017) 751–756.
doi: 10.1126/science.aam7092
M.V. Twigg, Catal. Today 117 (2006) 407–418.
doi: 10.1016/j.cattod.2006.06.044
A. Russell, W.S. Epling, Catal. Rev. Sci. Eng. 53 (2011) 337–423.
doi: 10.1080/01614940.2011.596429
M. Piumetti, S. Bensaid, D. Fino, et al., Catal. Struct. React. 1 (2015) 155–173.
C. Myung, J. Kim, K. Choi, et al., Fuel 94 (2012) 348–355.
doi: 10.1016/j.fuel.2011.10.041
R. Li, Y. Rao, Y. Huang, Chin. Chem. Lett. 34 (2023) 108000.
doi: 10.1016/j.cclet.2022.108000
S. Thampy, Y. Zheng, S. Dillon, et al., Catal. Today 310 (2018) 195–201.
doi: 10.1016/j.cattod.2017.05.008
B. Jin, B. Zhao, S. Liu, et al., Appl. Catal. B: Environ. 273 (2020) 119058.
doi: 10.1016/j.apcatb.2020.119058
Z. Feng, Q. Liu, Y. Chen, et al., Catal. Sci. Technol. 7 (2017) 838–847.
doi: 10.1039/C6CY02478E
Y. Chen, C. Du, Y. Lang, et al., Catal. Sci. Technol. 8 (2018) 5955–5962.
doi: 10.1039/C8CY01663A
X. Feng, R. Liu, S. Zhang, et al., Chem. Afr. 3 (2020) 695–701.
doi: 10.1007/s42250-020-00136-5
Y. Chen, X. Chen, X. Ma, et al., J. Catal. 402 (2021) 10–21.
doi: 10.1016/j.jcat.2021.07.027
X. Wan, L. Wang, S. Gao, et al., Chem. Eng. J. 410 (2021) 128305.
doi: 10.1016/j.cej.2020.128305
R. Liu, B. Zhou, L. Liu, et al., J. Colloid Interface Sci. 585 (2021) 302–311.
doi: 10.1016/j.jcis.2020.11.096
Z. Feng, C. Du, Y. Chen, et al., Catal. Sci. Technol. 8 (2018) 3785–3794.
doi: 10.1039/C8CY00897C
W. Li, H. Mao, B. Jin, et al., Fuel 306 (2021) 121685.
doi: 10.1016/j.fuel.2021.121685
Y. Zhu, C. Du, Z. Feng, et al., RSC Adv. 8 (2018) 5459–5467.
doi: 10.1039/C7RA11551B
Q. Yang, X. Wang, X. Wang, et al., ACS Catal. 11 (2021) 14507–14520.
doi: 10.1021/acscatal.1c03955
B.J. Rani, G. Ravi, R. Yuvakkumar, et al., Vacuum 166 (2019) 279–285.
doi: 10.1016/j.vacuum.2019.05.029
B.J. Rani, M. Gowsalya, G. Ravi, et al., Mater. Res. Express 6 (2019) 95090.
doi: 10.1088/2053-1591/ab3333
Z. Zhu, L. Zheng, S. Zheng, et al., Ceram. Int. 45 (2019) 885–891.
doi: 10.1016/j.ceramint.2018.09.260
B. Yang, J. Xu, C. Wang, et al., Mater. Chem. Phys. 245 (2020) 122679.
doi: 10.1016/j.matchemphys.2020.122679
H. Kim, J. Lee, Sens. Actuators. B: Chem. 192 (2014) 607–627.
doi: 10.1016/j.snb.2013.11.005
J.W. Fergus, Sens. Actuators. B: Chem. 123 (2007) 1169–1179.
doi: 10.1016/j.snb.2006.10.051
B. Liao, Q. Wei, K. Wang, et al., Sens. Actuators. B: Chem. 80 (2001) 208–214.
doi: 10.1016/S0925-4005(01)00892-9
F. Chu, C. Zuo, Z. Tian, et al., J. Alloy. Compd. 748 (2018) 375–381.
doi: 10.1016/j.jallcom.2018.03.166
M. Yu, Q. Wei, M. Wu, et al., J. Power Sources 396 (2018) 754–763.
doi: 10.1016/j.jpowsour.2018.06.095
S. Thampy, V. Ibarra, Y. Lee, et al., Appl. Surf. Sci. 385 (2016) 490–497.
doi: 10.1016/j.apsusc.2016.05.151
S. Ma, X. Wang, T. Chen, et al., Chem. Eng. J. 354 (2018) 191–196.
doi: 10.1016/j.cej.2018.07.197
X. Wang, T. Chen, Y. Zhang, et al., Mol. Catal. 516 (2021) 111983.
doi: 10.1016/j.mcat.2021.111983
Z. Feng, J. Wang, X. Liu, et al., Catal. Sci. Technol. 6 (2016) 5580–5589.
doi: 10.1039/C5CY01919B
J. Yang, J. Zhang, X. Liu, et al., J. Catal. 359 (2018) 122–129.
doi: 10.1016/j.jcat.2018.01.002
S. Thampy, N. Ashburn, S. Dillon, et al., J. Phys. Chem. C 124 (2020) 15913–15919.
doi: 10.1021/acs.jpcc.0c03443
X. Zhao, L. Wang, X. Chen, et al., J. Power Sources 449 (2020) 227482.
doi: 10.1016/j.jpowsour.2019.227482
X. Liu, Y. Tang, M. Shen, et al., Chem. Sci. 9 (2018) 2469–2473.
doi: 10.1039/C7SC05486F
Y. Lang, J. Zhang, Z. Feng, et al., Catal. Sci. Technol. 8 (2018) 5490–5497.
doi: 10.1039/C8CY01263F
X. Liu, J. Yang, G. Shen, et al., Nanoscale 11 (2019) 8150–8159.
doi: 10.1039/C8NR09054H
Y. Chen, G. Shen, Y. Lang, et al., J. Catal. 384 (2020) 96–105.
doi: 10.1016/j.jcat.2020.02.006
T. Chen, X. Wang, S. Ma, et al., Solid State Sci. 108 (2020) 106425.
doi: 10.1016/j.solidstatesciences.2020.106425
M. Yu, L. Wang, J. Liu, et al., ACS Appl. Mater. Interfaces 11 (2019) 17482–17490.
doi: 10.1021/acsami.9b04451
L. Gao, X. Zhong, J. Chen, et al., Chin. Chem. Lett. 34 (2023) 108085.
doi: 10.1016/j.cclet.2022.108085
H. Wang, T. Zhu, Y. Qiao, S. Dong, Z. Qu, Chin. Chem. Lett. 33 (2022) 5223–5227.
doi: 10.1016/j.cclet.2022.01.075
B. Xia, G. Wang, S. Cui, et al., Chin. Chem. Lett. 34 (2023) 107810.
doi: 10.1016/j.cclet.2022.107810
Z. Cirena, Y. Nie, Y. Li, et al., Chin. Chem. Lett. 34 (2023) 107726.
doi: 10.1016/j.cclet.2022.08.006
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188