Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction
-
* Corresponding author.
E-mail address: xxchu13633@163.com (X. Chu).
Citation: Xianxu Chu, Lu Wang, Junru Li, Hui Xu. Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction[J]. Chinese Chemical Letters, ;2024, 35(8): 109105. doi: 10.1016/j.cclet.2023.109105
L. Tao, M. Sun, Y. Zhou, et al., J. Am. Chem. Soc. 144 (2022) 10582–10590.
doi: 10.1021/jacs.2c03544
F. Lv, W. Zhang, M. Sun, et al., Adv. Energy Mater. 11 (2021) 2100187.
doi: 10.1002/aenm.202100187
L. Tao, Z. Xia, Q. Zhang, et al., Sci. Bull. 66 (2021) 44–51.
doi: 10.1016/j.scib.2020.07.021
M. Li, Z. Zhao, W. Zhang, et al., Adv. Mater. 33 (2021) e2103762.
doi: 10.1002/adma.202103762
M. Wang, M. Wang, C. Zhan, et al., J. Mater. Chem. A 10 (2022) 18972–18977.
doi: 10.1039/D2TA04882E
Y. Dong, Q. Sun, C. Zhan, et al., Adv. Funct. Mater. 32 (2022) 2210328.
L. Li, C. Liu, S. Liu, et al., ACS Nano 16 (2022) 14885–14894.
doi: 10.1021/acsnano.2c05776
H. Xu, B. Huang, Y. Zhao, et al., Inorg. Chem. 61 (2022) 4533–4540.
doi: 10.1021/acs.inorgchem.2c00296
Y. Qin, H. Huang, W. Yu, et al., Adv. Sci. 9 (2021) e2103722.
F. Xiao, Y.C. Wang, Z.P. Wu, et al., Adv. Mater. 33 (2021) 2006292.
doi: 10.1002/adma.202006292
L. Du, V. Prabhakaran, X. Xie, et al., Adv. Mater. 33 (2021) 1908232.
doi: 10.1002/adma.201908232
H. Xu, K. Wang, L. Jin, et al., J. Colloid Interface Sci. 650 (2023) 1500–1508.
doi: 10.1016/j.jcis.2023.07.109
H.Q. Fu, M. Zhou, P.F. Liu, et al., J. Am. Chem. Soc. 144 (2022) 6028–6039.
doi: 10.1021/jacs.2c01094
H. Xu, C. Wang, B. Huang, et al., Inorg. Chem. Front. 10 (2023) 2067–2074.
doi: 10.1039/D3QI00138E
J. Zhu, Y. Guo, F. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 12328–12334.
doi: 10.1002/anie.202101539
W.J. Jiang, T. Tang, Y. Zhang, et al., Acc. Chem. Res. 53 (2020) 1111–1123.
doi: 10.1021/acs.accounts.0c00127
L. Chai, Z. Hu, X. Wang, et al., Adv. Sci. 7 (2020) 1903195.
doi: 10.1002/advs.201903195
Z. Zhuang, Y. Wang, C.Q. Xu, et al., Nat. Commun. 10 (2019) 4875.
doi: 10.1038/s41467-019-12885-0
H. Xu, L. Yang, K. Wang, et al., Inorg. Chem. 62 (2023) 11271–11277.
doi: 10.1021/acs.inorgchem.3c01701
H. Wu, J. Wang, J. Yan, et al., Nanoscale 11 (2019) 20144–20150.
doi: 10.1039/C9NR05744G
H. Xu, K. Wang, G. He, et al., J. Mater. Chem. A 11 (2023) 17609–17615.
doi: 10.1039/D3TA01766D
H. Xu, C. Wang, G. He, et al., Dalton Trans. 52 (2023) 8466–8472.
doi: 10.1039/D3DT01228J
H. Xu, J. Li, X. Chu, Chem. Rec. 23 (2022) 202200244.
J. Zhu, R. Lu, W. Shi, et al., Energy Environ. Mater. 6 (2022) 12318.
S. Xie, H. Jin, C. Wang, et al., Chin. Chem. Lett. 34 (2023) 107681.
doi: 10.1016/j.cclet.2022.07.024
X. Mu, J. Gu, F. Feng, et al., Adv. Sci. 8 (2021) 2002341.
doi: 10.1002/advs.202002341
J. Zou, Y. Zou, H. Wang, et al., Chin. Chem. Lett. 34 (2023) 107378.
doi: 10.1016/j.cclet.2022.03.101
Q. Bai, F.C. Shen, S.L. Li, et al., Small Meth. 2 (2018) 1800049.
H. Xu, C. Wang, G. He, et al., Inorg. Chem. 61 (2022) 14224–14232.
doi: 10.1021/acs.inorgchem.2c02666
T. Lian, X. Li, Y. Wang, et al., ACS Appl. Mater. Interfaces 14 (2022) 30746–30759.
doi: 10.1021/acsami.2c05444
L. Tian, X. Pang, H. Xu, et al., Inorg. Chem. 61 (2022) 16944–16951.
doi: 10.1021/acs.inorgchem.2c03060
L. Zhu, C. Li, Q. Yun, et al., Chin. Chem. Lett. 34 (2023) 108515.
doi: 10.1016/j.cclet.2023.108515
W. Chen, S. Luo, M. Sun, et al., Adv. Mater. 34 (2022) 2206276.
doi: 10.1002/adma.202206276
H. Yu, T. Zhou, Z. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 12027–12031.
doi: 10.1002/anie.202101019
J. Sun, H. Xue, N. Guo, et al., Angew. Chem. Int. Ed. 60 (2021) 19435–19441.
doi: 10.1002/anie.202107731
H. Xu, L. Jin, K. Wang, et al., Int. J. Hydrog. Energy 48 (2023) 38324–38334.
doi: 10.1016/j.ijhydene.2023.05.254
M. Li, Z. Zhao, Z. Xia, et al., Angew. Chem. Int. Ed. 60 (2021) 8243–8250.
doi: 10.1002/anie.202016199
Z. Jin, J. Lyu, Y.L. Zhao, et al., Chem. Mater. 33 (2021) 1771–1780.
doi: 10.1021/acs.chemmater.0c04695
J. Jin, J. Yin, H. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 14117–14123.
doi: 10.1002/anie.202104055
W. Zhu, Z. Chen, Y. Pan, et al., Adv. Mater. 31 (2019) 1800426.
doi: 10.1002/adma.201800426
L. Li, S. Liu, C. Zhan, et al., Energy Environ. Sci. 16 (2023) 157–166.
doi: 10.1039/D2EE02076A
J. Hu, Y. Qin, H. Sun, et al., Small 18 (2022) 2106260.
doi: 10.1002/smll.202106260
X. Lv, T. Mou, J. Li, et al., Adv. Funct. Mater. 32 (2022) 2201262.
doi: 10.1002/adfm.202201262
C. Fan, X. Wu, M. Li, et al., Chem. Eng. J. 431 (2022) 133829.
doi: 10.1016/j.cej.2021.133829
L. Tian, Y. Liu, C. He, et al., Chem. Rec. 23 (2023) e202200213.
doi: 10.1002/tcr.202200213
S. Kim, S. Ji, H. Yang, et al., Appl. Catal. B 310 (2022) 121361.
doi: 10.1016/j.apcatb.2022.121361
G.R. Xu, S.H. Han, Z.H. Liu, et al., J. Power Sources 306 (2016) 587–592.
doi: 10.1016/j.jpowsour.2015.12.039
G.R. Xu, B. Wang, J.Y. Zhu, et al., ACS Catal. 6 (2016) 5260–5267.
doi: 10.1021/acscatal.6b01440
G. Fu, X. Jiang, M. Gong, et al., Nanoscale 6 (2014) 8226–8234.
doi: 10.1039/C4NR00947A
A.M. Bonastre, P.N. Bartlett, Anal. Chim. Acta 676 (2010) 1–8.
doi: 10.1016/j.aca.2010.07.003
Q. Lu, A.L. Wang, H. Cheng, et al., Small 14 (2018) 1801090.
doi: 10.1002/smll.201801090
Z. Fan, Z. Luo, Y. Chen, et al., Small 12 (2016) 3908–3913.
doi: 10.1002/smll.201601787
Z. Zhang, Y. Liu, B. Chen, et al., Adv. Mater. 28 (2016) 10282–10286.
doi: 10.1002/adma.201604829
Q. Xue, Z. Wang, Y. Ding, et al., Chin. J. Catal. 45 (2023) 6–16.
doi: 10.1016/S1872-2067(22)64186-X
G.R. Xu, J. Bai, L. Yao, et al., ACS Catal. 7 (2016) 452–458.
L. Bu, N. Zhang, S. Guo, et al., Science 354 (2016) 1410–1414.
doi: 10.1126/science.aah6133
Z. Cao, D. Kim, D. Hong, et al., J. Am. Chem. Soc. 138 (2016) 8120–8125.
doi: 10.1021/jacs.6b02878
Z. Cao, S.B. Zacate, X. Sun, et al., Angew. Chem. Int. Ed. 130 (2018) 12857–12861.
doi: 10.1002/ange.201805696
Y. Fang, J.C. Flake, J. Am. Chem. Soc. 139 (2017) 3399–3405.
doi: 10.1021/jacs.6b11023
Z. Li, R. Wu, L. Zhao, et al., Nano Res. 14 (2021) 3795–3809.
doi: 10.1007/s12274-021-3363-6
Y. Tan, Y. Zhu, X. Cao, ACS Catal. 12 (2022) 11821–11829.
doi: 10.1021/acscatal.2c02594
Y. Qin, W. Zhang, F. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) e202200899.
doi: 10.1002/anie.202200899
L. Tian, Z. Huang, X. Lu, et al., Inorg. Chem. 62 (2023) 1659–1666.
doi: 10.1021/acs.inorgchem.2c04092
X. Lu, T. Wang, M. Cao, et al., Int. J. Hydrog. Energy 48 (2023) 34740–34749.
doi: 10.1016/j.ijhydene.2023.04.257
X. Lu, M. Du, T. Wang, et al., Int. J. Hydrog. Energy 48 (2023) 34009–34017.
doi: 10.1016/j.ijhydene.2023.05.105
Z.X. Ge, T.J. Wang, Y. Ding, et al., Adv. Energy Mater. 12 (2022) 2103916.
doi: 10.1002/aenm.202103916
K. Deng, T. Zhou, Q. Mao, et al., Adv. Mater. 34 (2022) 2110680.
doi: 10.1002/adma.202110680
H. Wang, W. Wang, H. Yu, et al., Appl. Catal. B 307 (2022) 121172.
doi: 10.1016/j.apcatb.2022.121172
L.Y. Zhang, C.X. Guo, H. Cao, et al., Chem. Eng. J. 431 (2022) 133237.
doi: 10.1016/j.cej.2021.133237
C. Li, F. Gao, Y. Ren, et al., ACS Appl. Nano Mater. 5 (2022) 1192–1199.
doi: 10.1021/acsanm.1c03799
M. Zhou, J. Guo, J. Fang, Small Struct. 3 (2022) 2100188.
doi: 10.1002/sstr.202100188
L. Yang, X. Zhang, L. Yu, et al., Adv. Mater. 34 (2022) 2105410.
doi: 10.1002/adma.202105410
X. Zhou, Y. Ma, Y. Ge, et al., J. Am. Chem. Soc. 144 (2022) 547–555.
doi: 10.1021/jacs.1c11313
Q. Chen, Z. Chen, A. Ali, et al., Chem. Eng. J. 427 (2022) 131565.
doi: 10.1016/j.cej.2021.131565
S. Liu, S. Yin, H. Zhang, et al., Chem. Eng. J. 428 (2022) 131070.
doi: 10.1016/j.cej.2021.131070
G.R. Xu, F.Y. Liu, Z.H. Liu, et al., J. Mater. Chem. A 3 (2015) 21083–21089.
doi: 10.1039/C5TA06644A
Z. Wang, S. Xu, M. Li, et al., Chem. Commun. 59 (2023) 4511–4514.
doi: 10.1039/D3CC00221G
Z. Chen, Y. Xu, D. Ding, et al., Nat. Commun. 13 (2022) 763.
doi: 10.1038/s41467-022-28413-6
Y.R. Hong, S. Dutta, S.W. Jang, et al., J. Am. Chem. Soc. 144 (2022) 9033–9043.
doi: 10.1021/jacs.2c01589
J. Zhang, X. Mao, S. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) e202116867.
doi: 10.1002/anie.202116867
S. Anantharaj, S. Noda, Energy Environ. Sci. 15 (2022) 1461–1478.
doi: 10.1039/D1EE03516A
Y. Ding, B.Q. Miao, Y.C. Jiang, et al., J. Mater. Chem. A 7 (2019) 13770–13776.
doi: 10.1039/C9TA04283K
G.R. Xu, J. Bai, J.X. Jiang, et al., Chem. Sci. 8 (2017) 8411–8418.
doi: 10.1039/C7SC04109H
Z. Duan, K. Deng, C. Li, et al., Chem. Eng. J. 428 (2022) 132646.
doi: 10.1016/j.cej.2021.132646
H. Xu, J. Yuan, G. He, et al., Coord. Chem. Rev. 475 (2023) 214869.
doi: 10.1016/j.ccr.2022.214869
H. Xu, Y. Zhao, Q. Wang, et al., Coord. Chem. Rev. 451 (2022) 214261.
doi: 10.1016/j.ccr.2021.214261
H. Xu, Y. Zhao, G. He, et al., Int. J. Hydrog. Energy 47 (2022) 14257–14279.
doi: 10.1016/j.ijhydene.2022.02.152
Z. Zhu, Y. Zhang, H. Wang, et al., ChemCatChem 14 (2022) 2201100.
R. Cui, Q. Yuan, C. Zhang, et al., ACS Catal. 12 (2022) 11294–11300.
doi: 10.1021/acscatal.2c03369
S. Chen, B. Wang, J. Zhu, et al., Nano Lett. 21 (2021) 7325–7331.
doi: 10.1021/acs.nanolett.1c02502
D. Chen, L.H. Zhang, J. Du, et al., Angew. Chem. Int. Ed. 60 (2021) 24022–24027.
doi: 10.1002/anie.202109579
Z. Wang, Y. Zhou, C. Xia, et al., Angew. Chem. Int. Ed. 60 (2021) 19107–19112.
doi: 10.1002/anie.202107523
Y. Chen, Z. Fan, J. Wang, et al., J. Am. Chem. Soc. 142 (2020) 12760–12766.
doi: 10.1021/jacs.0c04981
N. Zhang, F. Zheng, B. Huang, et al., Adv. Mater. 32 (2020) e1906477.
doi: 10.1002/adma.201906477
Y. Sheng, Y. Guo, H. Yu, et al., Small 19 (2023) 2207305.
doi: 10.1002/smll.202207305
L. Zhao, Y. Xiong, X. Wang, et al., Small 18 (2022) 2106939.
doi: 10.1002/smll.202106939
T. Zhang, W. Zong, Y. Ouyang, et al., Adv. Fiber Mater. 3 (2021) 229–238.
doi: 10.1007/s42765-021-00072-0
K. Chu, H. Nan, Q. Li, et al., J. Energy Chem. 53 (2021) 132–138.
doi: 10.1016/j.jechem.2020.04.074
Y. Xu, X. Liu, N. Cao, et al., Sustain. Mater. Tech. 27 (2021) e00229.
J. Wang, B. Huang, Y. Ji, et al., Adv. Mater. 32 (2020) 1907112.
doi: 10.1002/adma.201907112
G. Deng, T. Wang, A.A. Alshehri, et al., J. Mater. Chem. A 7 (2019) 21674–21677.
doi: 10.1039/C9TA06523G
S. Liu, S. Yin, S. Jiao, et al., Mater. Today Energy 21 (2021) 100828.
doi: 10.1016/j.mtener.2021.100828
Z. Deng, C. Ma, X. Fan, et al., Mater. Today Phys. 28 (2022) 100854.
doi: 10.1016/j.mtphys.2022.100854
W.J. Sun, H.Q. Ji, L.X. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 22933–22939.
doi: 10.1002/anie.202109785
Y. Xu, Y. Wen, T. Ren, et al., Appl. Catal. B 320 (2023) 121981.
doi: 10.1016/j.apcatb.2022.121981
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Zhigang Zeng , Changzhou Liao , Lei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846