Development of porphyrin-based fluorescent sensors and sensor arrays for saccharide recognition
-
* Corresponding authors.
E-mail addresses: ybding@njau.edu.cn (Y. Ding), yshxie@ecust.edu.cn (Y. Xie).
Citation:
Yubin Ding, Jiaxin Wang, Ruinan Wang, Yongshu Xie. Development of porphyrin-based fluorescent sensors and sensor arrays for saccharide recognition[J]. Chinese Chemical Letters,
;2024, 35(2): 109008.
doi:
10.1016/j.cclet.2023.109008
X. Sun, D.J. Tony, Chem. Rev. 115 (2015) 8001–8037.
doi: 10.1021/cr500562m
M. Poudineh, C.L. Maikawa, E.Y. Ma, et al., Nat. Biomed. Eng. 5 (2021) 53–63.
J. Dai, H. Zhang, C. Huang, Z. Chen, A. Han, Anal. Chem. 92 (2020) 16122–16129.
doi: 10.1021/acs.analchem.0c03801
E.S.F. Berman, K.S. Kulp, M.G. Knize, et al., Anal. Chem. 78 (2006) 6497–6503.
doi: 10.1021/ac060865g
R. Pandey, S.K. Paidi, T.A. Valdez, et al., Acc. Chem. Res. 50 (2017) 264–272.
doi: 10.1021/acs.accounts.6b00472
M. Qin, Y. Huang, Y. Li, et al., Angew. Chem. Int. Ed. 55 (2016) 6911–6914.
doi: 10.1002/anie.201602582
T. Jin, M. Cui, D. Wu, et al., Chin. Chem. Lett. 32 (2021) 3899–3902.
doi: 10.1016/j.cclet.2021.06.033
J. Li, M. Zhao, J. Huang, et al., Coordin. Chem. Rev. 473 (2022) 214813.
doi: 10.1016/j.ccr.2022.214813
S. Li, F. Huo, Y. Yue, et al., Chin. Chem. Lett. 32 (2021) 3870–3875.
doi: 10.1016/j.cclet.2021.05.026
Y. Wang, J. Nie, W. Fang, et al., Chem. Rev. 120 (2020) 4534–4577.
doi: 10.1021/acs.chemrev.9b00814
W. Zhang, Y. Li, Y. Liang, et al., Chem. Sci. 10 (2019) 6617–6623.
doi: 10.1039/C9SC02266J
Y. Liu, C. Deng, L. Tang, et al., J. Am. Chem. Soc. 133 (2011) 660–663.
doi: 10.1021/ja107086y
W. Liu, Y. Tan, L.O. Jones, et al., J. Am. Chem. Soc. 143 (2021) 15688–15700.
doi: 10.1021/jacs.1c06333
Y. Sasaki, É. Leclerc, V. Hamedpour, et al., Anal. Chem. 91 (2019) 15570–15576.
doi: 10.1021/acs.analchem.9b03578
S. Jiang, J.O. Escobedo, K.K. Kim, et al., J. Am. Chem. Soc. 128 (2006) 12221–12228.
doi: 10.1021/ja063651p
J. Ramos-Soriano, S.J. Benitez-Benitez, A.P. Davis, M.C. Galan, Angew. Chem. Int. Ed. 60 (2021) 16880–16884.
doi: 10.1002/anie.202103545
Y. Ding, W.H. Zhu, Y. Xie, Chem. Rev. 117 (2017) 2203–2256.
doi: 10.1021/acs.chemrev.6b00021
L. Liu, J. Kim, L. Xu, et al., Angew. Chem. Int. Ed. 61 (2022) e202214342.
doi: 10.1002/anie.202214342
F. Wu, Y. Sun, H. Gao, et al., Sci. China Chem. 66 (2023) 164–173.
doi: 10.1007/s11426-022-1409-3
S.P. Wang, W. Lin, X. Wang, et al., Nat. Commun. 10 (2019) 1399.
doi: 10.1038/s41467-019-09363-y
Y. Xie, Y. Tang, W. Wu, et al., J. Am. Chem. Soc. 137 (2015) 14055–14058.
doi: 10.1021/jacs.5b09665
E.R.H. Walter, Y. Ge, J.C. Mason, J.J. Boyle, N.J. Long, J. Am. Chem. Soc. 143 (2021) 6460–6469.
doi: 10.1021/jacs.0c12864
A.P. Davis, Chem. Soc. Rev. 49 (2020) 2531–2545.
doi: 10.1039/C9CS00391F
T.S. Carter, T.J. Mooibroek, P.F.N. Stewart, et al., Angew. Chem. Int. Ed. 55 (2016) 9311–9315.
doi: 10.1002/anie.201603082
E.J. Toone, Curr. Opin. Struc. Biol. 4 (1994) 719–728.
doi: 10.1016/S0959-440X(94)90170-8
H. Teymourian, A. Barfidokht, J. Wang, Chem. Soc. Rev. 49 (2020) 7671–7709.
doi: 10.1039/D0CS00304B
A. Liu, M. Li, J. Wang, et al., Chin. Chem. Lett. 31 (2020) 1133–1136.
doi: 10.1016/j.cclet.2019.10.011
Q. Liu, Y. Yang, H. Li, et al., Biosens. Bioelectron. 64 (2015) 147–153.
doi: 10.1016/j.bios.2014.08.062
S. Hu, Y. Jiang, Y. Wu, et al., ACS Appl. Mater. Interfaces 12 (2020) 55324–55330.
doi: 10.1021/acsami.0c12988
P. Du, Q. Niu, J. Chen, et al., Anal. Chem. 92 (2020) 7980–7986.
doi: 10.1021/acs.analchem.0c01651
B. Sookcharoenpinyo, E. Klein, Y. Ferrand, et al., Angew. Chem. Int. Ed. 51 (2012) 4586–4590.
doi: 10.1002/anie.201200447
R.A. Tromans, T.S. Carter, L. Chabanne, et al., Nat. Chem. 11 (2019) 52–56.
doi: 10.1038/s41557-018-0155-z
T. Wei, Q. Xu, C. Zou, et al., Chin. Chem. Lett. 32 (2021) 1470–1474.
doi: 10.1016/j.cclet.2020.10.003
J.P. Lorand, J.O. Edwards, J. Org. Chem. 24 (1959) 769–774.
doi: 10.1021/jo01088a011
Y.E. Wang, R.X. Rong, H. Chen, et al., Chin. Chem. Lett. 28 (2017) 1262–1267.
doi: 10.1016/j.cclet.2017.02.013
J. Yoon, A.W. Czarnik, J. Am. Chem. Soc. 114 (1992) 5874–5875.
doi: 10.1021/ja00040a067
M. Takeuchi, Y. Chin, T. Imada, S. Shinkai, Chem. Commun. (1996) 1867–1868.
H. Murakami, T. Nagasaki, I. Hamachi, S. Shinkai, Tetrahedron Lett. 34 (1993) 6273–6276.
doi: 10.1016/S0040-4039(00)73730-0
H. Murakami, T. Nagasaki, I. Hamachi, S. Shinkai, J. Chem. Soc. Perkin Trans. (1994) 975–981.
T. Imada, H. Kijima, M. Takeuchi, S. Shinkai, Tetrahedron 52 (1996) 2817–2826.
doi: 10.1016/0040-4020(96)00003-8
M. Takeuchi, H. Kijima, I. Hamachi, S. Shinkai, Bull. Chem. Soc. Jpn. 70 (1997) 699–705.
doi: 10.1246/bcsj.70.699
A.E. Hargrove, R.N. Reyes, I. Riddington, E.V. Anslyn, J.L. Sessler, Org. Lett. 12 (2010) 4804–4807.
doi: 10.1021/ol1019647
O. Hirata, Y. Kubo, M. Takeuchi, S. Shinkai, Tetrahedron 60 (2004) 11211–11218.
doi: 10.1016/j.tet.2004.08.061
M. Takeuchi, T. Imada, S. Shinkai, J. Am. Chem. Soc. 118 (1996) 10658–10659.
doi: 10.1021/ja961480q
C.M. Renney, G. Fukuhara, Y. Inoue, A.P. Davis, Chem. Commun. 51 (2015) 9551–9554.
doi: 10.1039/C5CC02768C
V. r. Král, O. Rusin, J. Charvátová, P. Anzenbacher, J. Fogl, Tetrahedron Lett. 41 (2000) 10147–10151.
doi: 10.1016/S0040-4039(00)01805-0
J. Charvátová, O. Rusin, V. r. Král, K. Volka, P. Matějka, Sens. Actuator. B 76 (2001) 366–372.
doi: 10.1016/S0925-4005(01)00635-9
K. Ladomenou, R.P. Bonar-Law, Chem. Commun. (2002) 2108–2109.
J.D. Lee, Y.H. Kim, J.I. Hong, J. Org. Chem. 75 (2010) 7588–7595.
doi: 10.1021/jo101384u
J.-D. Lee, D.-H. Jang, J.I. Hong, Bull. Korean Chem. Soc. 31 (2010) 2685–2688.
doi: 10.5012/bkcs.2010.31.9.2685
M. Dukh, D. Saman, K. Lang, et al., Org. Biomol. Chem. 1 (2003) 3458–3463.
doi: 10.1039/B302947F
J. Kralova, J. Koivukorpi, Z. Kejik, et al., Org. Biomol. Chem. 6 (2008) 1548–1552.
doi: 10.1039/b717528k
E. Kalenius, J. Koivukorpi, E. Kolehmainen, P. Vainiotalo, Eur. J. Org. Chem. 2010 (2010) 1052–1058.
doi: 10.1002/ejoc.200901168
O. Francesconi, A. Ienco, G. Moneti, C. Nativi, S. Roelens, Angew. Chem. Int. Ed. 45 (2006) 6693–6696.
doi: 10.1002/anie.200602412
V. Král, O. Rusin, F.P. Schmidtchen, Org. Lett. 3 (2001) 873–876.
doi: 10.1021/ol007069w
W.B. Lu, L.H. Zhang, X.S. Ye, Sens. Actuator. B 113 (2006) 354–360.
doi: 10.1016/j.snb.2005.03.025
G. Fukuhara, M. Sasaki, M. Numata, T. Mori, Y. Inoue, Chem. Eur. J. 23 (2017) 11272–11278.
doi: 10.1002/chem.201701360
M. Sasaki, Y. Ryoson, M. Numata, G. Fukuhara, J. Org. Chem. 84 (2019) 6017–6027.
doi: 10.1021/acs.joc.9b00040
S.K. Bhaumik, Y.S. Patra, S. Banerjee, Chem. Commun. 56 (2020) 9541–9544.
doi: 10.1039/D0CC03644G
I. Capila, R.J. Linhardt, Angew. Chem. Int. Ed. 41 (2002) 391–412.
Y. Xu, S. Masuko, M. Takieddin, et al., Science 334 (2011) 498.
doi: 10.1126/science.1207478
S.P. Pandey, P. Jha, P.K. Singh, Sens. Actuator. B 359 (2022) 131613.
doi: 10.1016/j.snb.2022.131613
L. Fan, D. Jia, W. Zhang, Y. Ding, Analyst 145 (2020) 7809–7824.
doi: 10.1039/D0AN01562H
Z. Li, J.R. Askim, K.S. Suslick, Chem. Rev. 119 (2019) 231–292.
doi: 10.1021/acs.chemrev.8b00226
J. Chen, B.L. Hickey, L. Wang, et al., Nat. Chem. 13 (2021) 488–495.
doi: 10.1038/s41557-021-00647-9
D. Jia, C. Yang, W. Zhang, Y. Ding, Dyes Pigments 190 (2021) 109266.
doi: 10.1016/j.dyepig.2021.109266
Z. Zheng, W.C. Geng, J. Gao, Y.J. Mu, D.S. Guo, Org. Chem. Front. 5 (2018) 2685–2691.
doi: 10.1039/C8QO00606G
R.B.C. Jagt, R.F. Gomez-Biagi, M. Nitz, Angew. Chem. Int. Ed. 48 (2009) 1995–1997.
doi: 10.1002/anie.200805238
Z. Yang, X. Fan, W. Cheng, Y. Ding, W. Zhang, Anal. Chem. 91 (2019) 10295–10301.
doi: 10.1021/acs.analchem.9b02516
Z. Yang, L. Fan, X. Fan, et al., Anal. Chem. 92 (2020) 6727–6733.
doi: 10.1021/acs.analchem.0c00808
M. Hou, L. Fan, X. Fan, et al., Anal. Chim. Acta 1141 (2021) 214–220.
doi: 10.1016/j.aca.2020.10.052
D. Jia, Q. Pan, R. Hu, W. Zhang, Y. Ding, Sens. Actuator. B 385 (2023) 133677.
doi: 10.1016/j.snb.2023.133677
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Yuqing Wang , Zhemin Li , Qingjun Lu , Qizhao Li , Jiaxin Luo , Chengjie Li , Yongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093
Ya-Ping Liu , Zhi-Rong Gui , Zhen-Wen Zhang , Sai-Kang Wang , Wei Lang , Yanzhu Liu , Qian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO−. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
Liangji Chen , Zhen Yuan , Fudong Feng , Xin Zhou , Zhile Xiong , Wuji Wei , Hao Zhang , Banglin Chen , Shengchang Xiang , Zhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344
Xiaxia Xing , Xiaoyu Chen , Zhenxu Li , Xinhua Zhao , Yingying Tian , Xiaoyan Lang , Dachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230
Jichun Li , Zhengren Wang , Yu Deng , Hongxiu Yu , Yonghui Deng , Xiaowei Cheng , Kaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
Yueyue WEI , Xuehua SUN , Hongmei CHAI , Wanqiao BAI , Yixia REN , Loujun GAO , Gangqiang ZHANG , Jun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Huan Yao , Jian Qin , Yan-Fang Wang , Song-Meng Wang , Liu-Huan Yi , Shi-Yao Li , Fangfang Du , Liu-Pan Yang , Li-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Yu Deng , Yan Liu , Yonghui Deng , Jinsheng Cheng , Yidong Zou , Wei Luo . In situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898