Indole derivatives as agrochemicals: An overview
-
* Corresponding authors.
E-mail addresses: yangzhaokai@cau.edu.cn (Z. Yang), jwu6@gzu.edu.cn (J. Wu).
Citation:
Ping Sun, Yuanqin Huang, Shunhong Chen, Xining Ma, Zhaokai Yang, Jian Wu. Indole derivatives as agrochemicals: An overview[J]. Chinese Chemical Letters,
;2024, 35(7): 109005.
doi:
10.1016/j.cclet.2023.109005
B. Zdrazil, R. Guha, J. Med. Chem. 61 (2018) 4688–4703.
doi: 10.1021/acs.jmedchem.7b00954
T. Chen, H. Xiong, J.F. Yang, et al., J. Agric. Food Chem. 68 (2020) 9839–9877.
doi: 10.1021/acs.jafc.0c03369
F.R. De Sá Alves, E.J. Barreiro, C.A. Fraga, Mini Rev. Med. Chem. 9 (2009) 782–793.
doi: 10.2174/138955709788452649
B.E. Evans, K.E. Rittle, M.G. Bock, et al., J. Med. Chem. 31 (1988) 2235–2246.
doi: 10.1021/jm00120a002
M.E. Welsch, S.A. Snyder, B.R. Stockwell, Curr. Opin. Chem. Biol. 14 (2010) 347–361.
doi: 10.1016/j.cbpa.2010.02.018
N.K. Kaushik, N. Kaushik, P. Attri, Molecules 18 (2013) 6620–6662.
doi: 10.3390/molecules18066620
R.E. Dolle, K.H. Nelson, J. Comb. Chem. 1 (1999) 235–282.
doi: 10.1021/cc9900192
R.G. Franzén, J. Comb. Chem. 2 (2000) 195–214.
doi: 10.1021/cc000002f
R.E. Dolle, J. Comb. Chem. 3 (2001) 477–517.
doi: 10.1021/cc010049g
T.N. Akhaja, J.P. Raval, Chin. Chem. Lett. 23 (2012) 785–788.
doi: 10.1016/j.cclet.2012.05.004
Z.N. Xu, Y.Q. Wang, Y.C. Zheng, et al., Org. Chem. Front. 7 (2020) 3709–3714.
doi: 10.1039/D0QO01120G
S.Y. Zhou, G.L. Huang, G.Y. Chen, Bioorg. Med. Chem. Lett. 41 (2021) 128009.
doi: 10.1016/j.bmcl.2021.128009
A. Hilgeroth, K. Yasrebi, S. Suzen, et al., Med. Chem. 15 (2019) 833–839.
doi: 10.2174/1573406415666190208170126
Y. Liu, Y. Cui, L.Y. Lu, et al., Arch. Pharm. 353 (2020) e2000120.
Q.Q. Tan, Y.Z. Li, T.T. Li, et al., Microporous Mesoporous Mater. 325 (2021) 111342.
doi: 10.1016/j.micromeso.2021.111342
M. Budovská, R. Michalková, J. Mojžiš, Tetrahedron 143 (2023) 133573.
doi: 10.1016/j.tet.2023.133573
H.Y. Sun, K.P. Sun, J.Y. Sun, Molecules 28 (2023) 2204.
doi: 10.3390/molecules28052204
C.L. Wei, L. Zhao, Z.R. Sun, et al., Pestic. Biochem. Physiol. 166 (2020) 104568.
doi: 10.1016/j.pestbp.2020.104568
Y.B. Sun, H. Wu, W.N. Zhou, et al., Pestic. Biochem. Physiol. 183 (2022) 105077.
doi: 10.1016/j.pestbp.2022.105077
G.Y. Yang, J.M. Dai, Q.L. Mi, et al., Phytochemistry 198 (2022) 113137.
doi: 10.1016/j.phytochem.2022.113137
Y.N. Zhu, M.X. Liu, B.B. Cai, et al., Chem. Nat. Compd. 58 (2022) 712–716.
doi: 10.1007/s10600-022-03774-y
X.H. Gao, X.L. Pan, P.Y. Wang, et al., Org. Chem. Front. 9 (2022) 5790–5797.
doi: 10.1039/D2QO01091G
H. Guo, Eur. J. Med. Chem. 164 (2019) 678–688.
doi: 10.1016/j.ejmech.2018.12.017
H. Wu, M.L. Qin, K. Fan, et al., J. Asian Nat. Prod. Res. 25 (2022) 429–437.
Y.H. Zhang, L. Li, Y.Q. Li, et al., J. Nat. Prod. 85 (2022) 1880–1885.
doi: 10.1021/acs.jnatprod.2c00322
X.J. Zhao, L.Z. Zhao, Y. Zhao, et al., Viruses 13 (2021) 1433.
doi: 10.3390/v13081433
S. Jin, H.K. Do, C. Hwang, et al., Int. J. Environ. Sci. 30 (2021) 369–378.
doi: 10.5322/JESI.2021.30.5.369
P.D. Miranda de Menezes Neves, B.M. Coelho Ferreira, S. Mohrbacher, et al., Lancet Infect. Dis. 20 (2020) 1215-1215.
doi: 10.1016/S1473-3099(20)30323-6
Y.H. Xie, Y. Song, Z.W. Cong, Chem. Biodivers. 19 (2022) e202200731.
doi: 10.1002/cbdv.202200731
L.J. Funkhouser-Jones, R. Xu, G. Wilke, et al., Cell Rep. 42 (2023) 112680.
doi: 10.1016/j.celrep.2023.112680
D.R. Duca, B.R. Glick, Appl. Microbiol. Biotechnol. 104 (2020) 8607–8619.
doi: 10.1007/s00253-020-10869-5
K.I. Hayashi, K. Arai, Y. Aoi, et al., Nat. Commun. 12 (2021) 6752.
doi: 10.1038/s41467-021-27020-1
M.H. Ma, E. Batsaikhan, C.M. Wu, et al., J. Chin. Chem. Soc. 70 (2023) 1200–1207.
doi: 10.1002/jccs.202300023
Q. Yin, J. Zhang, S. Wang, Hortic. Res. 8 (2021) 229.
doi: 10.1038/s41438-021-00658-0
S.K. Jaiswal, M. Mohammed, F.Y.I. Ibny, et al., Front. Sustain. Food Syst. 4 (2021) 619676.
doi: 10.3389/fsufs.2020.619676
K.G. Thanuja, B. Annadurai, S. Thankappan, et al., Arch. Microbiol. 202 (2020) 2739–2749.
doi: 10.1007/s00203-020-01983-z
X. Sun, N. Wang, P. Li, et al., Plant Cell Environ. 43 (2020) 358–373.
doi: 10.1111/pce.13667
G. Gomes, K. Scortecci, Plant Biol. 23 (2021) 894–904.
doi: 10.1111/plb.13303
M.R.A. de Figueiredo, L.C. Strader, Trends Biochem. Sci. 47 (2022) 865–874.
doi: 10.1016/j.tibs.2022.06.004
B. Kloosterman, R.G.F. Visser, C.W.B. Bachem, Plant Physiol. Biochem. 44 (2006) 766–775.
doi: 10.1016/j.plaphy.2006.10.026
S. Piya, S.K. Shrestha, B. Binder, et al., Front. Plant Sci. 5 (2014) 744.
S. Damodaran, L.C. Strader, Front. Plant Sci. 10 (2019) 851.
doi: 10.3389/fpls.2019.00851
H.Q. Dong, M.C. Guo, Y. Liang, et al., Mater. Sci. Eng. 89 (2018) 175–181.
doi: 10.1016/j.msec.2018.04.004
S. Aihebaier, T. Muhammad, A. Wei, et al., ACS Omega 4 (2019) 16789–16793.
doi: 10.1021/acsomega.9b01550
L. Fattorini, A. Veloccia, F. Della Rovere, et al., BMC Plant Biol. 17 (2017) 121.
doi: 10.1186/s12870-017-1071-x
R.M. Napier, Auxin receptors and perception, in: E. Zažímalová, J. Petrášek, E. Benková (Eds. ), Auxin and Its Role in Plant Development, Springer Vienna, Vienna, 2014, pp. 101–116.
S. Marumo, H. Hattori, H. Abe, et al., Nature 219 (1968) 959–960.
C.P.A. Jayasinghege, J.A. Ozga, K.D. Waduthanthri, et al., J. Exp. Bot. 68 (2017) 4137–4151.
doi: 10.1093/jxb/erx217
K. Dziurka, M. Dziurka, M. Warchoł, et al., In Vitro Cell. Dev. Biol. Plant 55 (2019) 221–229.
X. Cao, H.L. Yang, C.Q. Shang, et al., Int. J. Mol. Sci. 20 (2019) 6343.
doi: 10.3390/ijms20246343
M.M. Pérez-Alonso, P. Ortiz-García, J. Moya-Cuevas, et al., J. Exp. Bot. 72 (2020) 459–475.
Z.Y. Han, H. Ghanizadeh, H.T. Zhang, et al., J. Fungi 8 (2022) 1166.
doi: 10.3390/jof8111166
D. Szymaniak, T. Kleiber, M. Wojcieszak, et al., ChemistrySelect 6 (2021) 5614–5621.
doi: 10.1002/slct.202101084
P. Staswick, M. Rowe, E.P. Spalding, et al., Front. Plant Sci. 8 (2017) 736.
doi: 10.3389/fpls.2017.00736
S. Park, K. Back, J. Pineal Res. 53 (2012) 385–389.
doi: 10.1111/j.1600-079X.2012.01008.x
M. Zhang, C.X. Gao, L. Xu, et al., Cells 11 (2022) 3250.
doi: 10.3390/cells11203250
H.Y. Lee, K. Lee, K. Back, Biomolecules 9 (2019) 712.
doi: 10.3390/biom9110712
H.B. Zhao, T. Su, L.Q. Huo, et al., J. Pineal Res. 59 (2015) 255–266.
doi: 10.1111/jpi.12258
C. de Meester, Mutat. Res. 339 (1995) 139–153.
doi: 10.1016/0165-1110(95)90008-X
J.C. Callaway, J. Psychoact. Drugs 37 (2005) 151–155.
doi: 10.1080/02791072.2005.10399796
Z.Z. Wang, D.D. Xie, X.H. Gan, et al., Bioorg. Med. Chem. Lett. 27 (2017) 4096–4100.
doi: 10.1016/j.bmcl.2017.07.038
Y.M. Ma, X.A. Liang, Y. Kong, et al., J. Agric. Food Chem. 64 (2016) 6659–6671.
doi: 10.1021/acs.jafc.6b01772
B.E.M. El-Gendy, M.E. Rateb, Bioorg. Med. Chem. Lett. 25 (2015) 3125–3128.
doi: 10.1016/j.bmcl.2015.06.010
X.P. Zhang, W.B. Huang, X. Lu, et al., J. Agric. Food Chem. 69 (2021) 7458–7466.
doi: 10.1021/acs.jafc.1c00897
J.L. Xie, W.T. Xu, H.J. Song, et al., J. Agric. Food Chem. 68 (2020) 5555–5571.
doi: 10.1021/acs.jafc.0c00875
H.Q. Wang, H.J. Song, J. Agric. Food Chem. 68 (2020) 2631–2638.
doi: 10.1021/acs.jafc.9b07694
X. Lv, M.T. Yuan, Y.H. Pei, et al., J. Agric. Food Chem. 69 (2021) 4992–5002.
doi: 10.1021/acs.jafc.1c00941
C.L. Wei, J. Zhang, J. Shi, et al., J. Agric. Food Chem. 67 (2019) 13882–13891.
doi: 10.1021/acs.jafc.9b05357
C.L. Wei, X. Yang, S.J. Shi, et al., J. Agric. Food Chem. 71 (2023) 267–275.
doi: 10.1021/acs.jafc.2c06881
K.B. Oh, W. Mar, S. Kim, et al., Bioorg. Med. Chem. Lett. 15 (2005) 4927–4931.
doi: 10.1016/j.bmcl.2005.08.021
X.F. Ji, Z.W. Wang, J. Dong, et al., J. Agric. Food Chem. 64 (2016) 9143–9151.
doi: 10.1021/acs.jafc.6b04020
J.C. Guo, Y.A. Hao, X.F. Ji, et al., J. Agric. Food Chem. 67 (2019) 10018–10031.
doi: 10.1021/acs.jafc.9b04093
T.A. Wang, L. Li, Y.A. Zhou, et al., J. Agric. Food Chem. 69 (2021) 10093–10103.
doi: 10.1021/acs.jafc.1c04098
A.D. Lu, T.A. Wang, H. Hui, et al., J. Agric. Food Chem. 67 (2019) 2148–2156.
doi: 10.1021/acs.jafc.8b06859
L.J. Yu, A.L. Dai, W. Zhang, et al., J. Agric. Food Chem. 70 (2022) 10693–10707.
doi: 10.1021/acs.jafc.2c02301
L.W. Chen, Y.X. Liu, H.J. Song, et al., Mol. Divers. 21 (2017) 61–68.
doi: 10.1007/s11030-016-9697-4
Q.M. Wang, Q. Wang, Y. Qu, et al., Patent, CN111269237A, 2020.
L.W. Chen, Y.K. Hao, H.J. Song, et al., J. Agric. Food Chem. 68 (2020) 10618–10625.
doi: 10.1021/acs.jafc.0c04488
Q. Wang, H. Song, Q. Wang, Chin. Chem. Lett. 33 (2022) 859–862.
doi: 10.1016/j.cclet.2021.08.005
Q.M. Wang, H.J. Song, L.W. Chen, C.L. Li, G.Q. Yu, Patent, CN107353292A, 2017.
Q.M. Wang, Q. Wang, Y. Qu, Patent, CN111264542A, 2020.
F.Z. Xu, Y.Y. Wang, F. He, et al., Green Chem. Lett. Rev. 15 (2022) 139–152.
doi: 10.1080/17518253.2021.2023660
H. Gadegoni, S. Manda, Chin. Chem. Lett. 24 (2013) 127–130.
doi: 10.1016/j.cclet.2013.01.001
Z.J. Zhang, Y. Zeng, Z.Y. Jiang, et al., Pest Manag. Sci. 74 (2018) 1736–1746.
doi: 10.1002/ps.4873
J.M. Xi, Z.J. Zhang, Q. Zhu, G.H. Zhong, Int. J. Mol. Sci. 19 (2018) 4044.
doi: 10.3390/ijms19124044
Y.X. Liu, H.J. Song, Y.Q. Huang, et al., J. Agric. Food Chem. 62 (2014) 9987–9999.
doi: 10.1021/jf503794g
Z.J. Zhang, Z.Y. Jiang, Q. Zhu, G.H. Zhong, J. Agric. Food Chem. 66 (2018) 9598–9607.
doi: 10.1021/acs.jafc.8b02124
X.Y. Zhao, A.C. Liao, F. Zhang, et al., J. Heterocycl. Chem. 57 (2020) 761–767.
doi: 10.1002/jhet.3817
G.P. Ouyang, Z.C. Wang, W.N. Hu, Y.Y. Qi, W. Li, Patent, CN111285860A, 2020.
B. Liu, R. Li, Y.A. Li, et al., J. Agric. Food Chem. 67 (2019) 1795–1806.
doi: 10.1021/acs.jafc.8b06175
Z.Y. Yu, H. Jiang, L. Wang, et al., Front. Chem. 8 (2020) 717.
doi: 10.3389/fchem.2020.00717
Y. Gao, D.C. Huang, C. Liu, et al., Bioorg. Med. Chem. 35 (2021) 116073.
doi: 10.1016/j.bmc.2021.116073
K.L. Keel, J.J. Tepe, Org. Lett. 23 (2021) 5368–5372.
doi: 10.1021/acs.orglett.1c01681
J. Zeng, Z.J. Zhang, Q. Zhu, Z.Y. Jiang, G.H. Zhong, Molecules 25 (2020) 1189.
doi: 10.3390/molecules25051189
L.W. Chen, J.L. Xie, H.J. Song, et al., J. Agric. Food Chem. 64 (2016) 6508–6516.
doi: 10.1021/acs.jafc.6b02683
B. Jia, Y.M. Ma, B. Liu, et al., Front. Chem. 7 (2019) 837.
doi: 10.3389/fchem.2019.00837
Y. Wang, S. Guo, L. Yu, et al., Chin. Chem. Lett. 35 (2024) 108207.
doi: 10.1016/j.cclet.2023.108207
M. Zhang, L. Chen, J.K. Hong, Y.T. Shen, L.Q. Yang, Patent, CN113735871A, 2021.
L.Q. Yang, L. Chen, M. Zhang, M. Xia, T. Zhao, Patent, CN112898311A, 2021.
H.D. Li, S. Wu, X. Yang, et al., J. Agric. Food Chem. 70 (2022) 12341–12354.
doi: 10.1021/acs.jafc.2c04213
R.R. King, L.A. Calhoun, Phytochemistry 70 (2009) 833–841.
doi: 10.1016/j.phytochem.2009.04.013
H.B. Zhang, Q.P. Wang, X. Ning, H. Hang, et al., J. Agric. Food Chem. 63 (2015) 3734–3741.
doi: 10.1021/jf506153t
H. Li, J. Xiao, Y.Q. Gao, et al., J. Agric. Food Chem. 62 (2014) 3734–3741.
doi: 10.1021/jf500390h
J.M. de Souza, B.R. Fazolo, J.W. Ferreira Lacerda, et al., Photochem. Photobiol. 96 (2020) 1233–1242.
doi: 10.1111/php.13295
M.C. da Silva Mendes, B.R. Fazolo, J.M. de Souza, et al., Photochem. Photobiol. Sci. 18 (2019) 1350–1358.
doi: 10.1039/c8pp00506k
W. Chotpatiwetchkul, N. Chotsaeng, C. Laosinwattana, P. Charoenying, ACS Omega 7 (2022) 29002–29012.
doi: 10.1021/acsomega.2c02704
J.B. Liu, Y.B. Shi, W. Wen, et al. Patent, CN113354645, 2021.
J.B. Liu, Y.B. Shi, Z.C. Tian, et al., J. Agric. Food Chem. 70 (2022) 5197–5206.
doi: 10.1021/acs.jafc.1c08297
J.H. Lee, Y.G. Kim, M. Kim, et al., Environ. Microbiol. 19 (2017) 1776–1790.
doi: 10.1111/1462-2920.13649
S.K. Rajasekharan, J.H. Lee, V. Ravichandran, J. Lee, Sci. Rep. 7 (2017) 6803.
doi: 10.1038/s41598-017-07074-2
S.K. Rajasekharan, J.H. Lee, V. Ravichandran, et al., Sci. Rep. 9 (2019) 2010.
doi: 10.1038/s41598-019-38561-3
S.K. Rajasekharan, S. Kim, J.C. Kim, J. Lee, Pestic. Biochem. Physiol. 163 (2020) 76–83.
doi: 10.1016/j.pestbp.2019.10.012
Â. C. Costa, S.C. Cavalcanti, A.S. Santana, et al., Ecotoxicology 28 (2019) 973–982.
doi: 10.1007/s10646-019-02095-1
J. Zhang, R.J. Song, S. Wu, et al., J. Agric. Food Chem. 70 (2022) 5349–5356.
doi: 10.1021/acs.jafc.2c00838
J. Cassayre, L.P. Molleyres, P. Maienfisch, F. Cederbaum, Patent, US8309567, 2012.
J. Cassayre, L.P. Molleyres, P. Maienfisch, F. Cederbaum, Patent, US8299058, 2012.
Wei Sun , Anjing Liao , Li Lei , Xu Tang , Ya Wang , Jian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855
Shaobo Wang , Honggui Yang , Chunni Zhao , Deyu Hu , Baoan Song . Antibacterial agrochemicals: Recent research progress and outlook. Chinese Chemical Letters, 2026, 37(1): 111543-. doi: 10.1016/j.cclet.2025.111543
Ali Dai , Zhiguo Zheng , Liusheng Duan , Jian Wu , Weiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
Anjing Liao , Wei Sun , Yaming Liu , Han Yan , Zhi Xia , Jian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094
Xiaofang Luo , Ye Wu , Xiaokun Zhang , Min Tang , Feiye Ju , Zuodong Qin , Gregory J Duns , Wei-Dong Zhang , Jiang-Jiang Qin , Xin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724
Changxing Yang , Guxia Wang , Shengwei Guo , Jianlin Sun . Potential and progress of two-dimensional nanomaterials in oil-based lubrication. Chinese Chemical Letters, 2025, 36(9): 111178-. doi: 10.1016/j.cclet.2025.111178
Yi-Ru Bai , Qing-Chuan Duan , Dong-Jie Seng , Ying Xu , Hong-Bo Ren , Jie Zhang , Dan-Dan Shen , Li Yang , Hong-Min Liu , Shuo Yuan . A comprehensive review of small molecule drugs approved by the FDA in 2024: Advance and prospect. Chinese Chemical Letters, 2025, 36(10): 111025-. doi: 10.1016/j.cclet.2025.111025
Chao Chen , Wang Geng , Ke Li , Qiong Lei , Zhichao Jin , Xiuhai Gan . Pyridazine: A privileged scaffold in the development of 21st-century pesticides. Chinese Chemical Letters, 2025, 36(8): 110902-. doi: 10.1016/j.cclet.2025.110902
Tingting Du , Siyu Lu , Zongnan Zhu , Mei Zhu , Yan Zhang , Jian Zhang , Jixiang Chen . Pyrazole derivatives: Recent advances in discovery and development of pesticides. Chinese Chemical Letters, 2025, 36(9): 110912-. doi: 10.1016/j.cclet.2025.110912
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
Jian Song , Shenghui Wang , Qiuge Liu , Xiao Wang , Shuo Yuan , Hongmin Liu , Saiyang Zhang . N-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678
Hongling Liu , Yue Xia , Guang Xu , Yafei Yang , Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039
Siran Wang , Yinuo Wang , Yilong Zhao , Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033
Junyuan Zhang , Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Yingyue ZHANG , Liuqing KANG , Yating YANG , Xiaofen GUAN , Wenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100
Peipei CUI , Yawen ZHENG , Pan LI , Peiyan GUAN , Zhaohong QIAN . Praseodymium-organic framework with 4, 4′-oxybis(benzoic acid): Rare broken layer structure, antibacterial activity, and sensing for Cd2+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1641-1649. doi: 10.11862/CJIC.20250152
Jiarong ZHU , Xiaohua ZHANG , Xinting XIONG , Xuliang NIE , Xiuying SONG , Miaomiao ZHANG , Dayong PENG , Xiuguang YI . Crystal structure, Hirshfeld surface analysis, and antifungal activity of five complexes based on 2,5-bis(carboxymethoxy)terephthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2358-2370. doi: 10.11862/CJIC.20250150
Xinzhe ZHANG , Jiarong XU , Mochou GAO , Yage LIU , Yanbao ZHAO , Jingzeng CUI , Xueyan ZOU . Silver chloride/chitosan-based chloramine nanohybrid with excellent antibacterial activity: Design and structure characterization as well as Ag+-Cl- synergistic antibacterial effect. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 428-438. doi: 10.11862/CJIC.20250123