Enhancing the electrocatalytic performance of nitrate reduction to ammonia by in-situ nitrogen leaching
-
* Corresponding author.
E-mail address: herx@swu.edu.cn (R. He).
Citation: Mimi Fu, Yini Mao, Hua Wang, Wei Luo, Yimin Jiang, Wei Shen, Ming Li, Rongxing He. Enhancing the electrocatalytic performance of nitrate reduction to ammonia by in-situ nitrogen leaching[J]. Chinese Chemical Letters, ;2024, 35(2): 108341. doi: 10.1016/j.cclet.2023.108341
Z. Gao, Y. Zhang, D. Li, et al., J. Hazard. Mater. 286 (2015) 425-431.
doi: 10.1016/j.jhazmat.2015.01.005
J. Martínez, A. Ortiz, I. Ortiz, Appl. Catal. B: Environ. 207 (2017) 42-59.
doi: 10.1016/j.apcatb.2017.02.016
F. Ni, Y. Ma, J. Chen, W. Luo, J. Yang, Chin. Chem. Lett. 32 (2021) 2073-2078.
doi: 10.1016/j.cclet.2021.03.042
Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 59 (2020) 5350-5354.
doi: 10.1002/anie.201915992
S.L. Foster, S.I.P. Bakovic, R.D. Duda, et al., Nat. Catal. 1 (2018) 490-500.
doi: 10.1038/s41929-018-0092-7
Y. Ashida, K. Arashiba, K. Nakajima, Y. Nishibayashi, Nature 568 (2019) 536-540.
doi: 10.1038/s41586-019-1134-2
X. Zhao, G. Hu, F. Tan, et al., J. Mater. Chem. A 9 (2021) 23675-23686.
doi: 10.1039/d1ta05718a
Y. Yao, J. Wang, U.B. Shahid, et al., Electrochem. Energ. Rev. 3 (2020) 239-270.
doi: 10.1007/s41918-019-00061-3
Z. Du, J. Liang, S. Li, et al., J. Mater. Chem. A 9 (2021) 13861-13866.
doi: 10.1039/d1ta02424h
L. Wang, M. Xia, H. Wang, et al., Joule 2 (2018) 1055-1074.
doi: 10.1016/j.joule.2018.04.017
H. Jin, L. Li, X. Liu, et al., Adv. Mater. 31 (2019) 1902709.
doi: 10.1002/adma.201902709
X. Zou, J. Xie, C. Wang, et al., Chin. Chem. Lett. (2022) 107908.
doi: 10.1016/j.cclet.2022.107908
T. Feng, F. Li, X. Hu, Y. Wang, Chin. Chem. Lett. (2022) 107862.
doi: 10.1016/j.cclet.2022.107862
R. Jia, Y. Wang, C. Wang, et al., ACS Catal. 10 (2020) 3533-3540.
doi: 10.1021/acscatal.9b05260
H. Wang, Y. Guo, C. Li, et al., ACS Appl. Mater. Interfaces 14 (2022) 34761-34769.
doi: 10.1021/acsami.2c08534
Y. Huang, J. Long, Y. Wang, et al., ACS Appl. Mater. Interfaces 13 (2021) 54967-54973.
doi: 10.1021/acsami.1c15206
G. Huang, Z. Xiao, R. Chen, S. Wang, ACS Sustain. Chem. Eng. 6 (2018) 15954-15969.
doi: 10.1021/acssuschemeng.8b04397
Z. Wang, G. Qu, C. Wang, et al., Nanoscale 12 (2020) 18400-18408.
doi: 10.1039/d0nr04043f
L. Wang, W. Zhang, X. Zheng, et al., Nat. Energy 2 (2017) 869-876.
doi: 10.1038/s41560-017-0015-x
X. Yang, S. Kattel, J. Nash, et al., Angew. Chem. Int. Ed. 58 (2019) 13768-13772.
doi: 10.1002/anie.201906449
X. Yang, J. Nash, J. Anibal, et al., J. Am. Chem. Soc. 140 (2018) 13387-13391.
doi: 10.1021/jacs.8b08379
S.Z. Andersen, V. Čolić, S. Yang, et al., Nature 570 (2019) 504-508.
doi: 10.1038/s41586-019-1260-x
L. Zhang, L.X. Ding, G.F. Chen, X. Yang, H. Wang, Angew. Chem. Int. Ed. 58 (2019) 2612-2616.
doi: 10.1002/anie.201813174
C. Wang, W. Zhou, Z. Sun, et al., J. Mater. Chem. A 9 (2021) 239-243.
doi: 10.1039/d0ta09590g
W. Wang, H. Zhang, S. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 16644-16650.
doi: 10.1002/anie.201908640
Y. Sun, K. Mao, Q. Shen, et al., Adv. Funct. Mater. 32 (2022) 2109792.
doi: 10.1002/adfm.202109792
K. Xu, H. Cheng, H. Lv, et al., Adv. Mater. 30 (2018) 1703322.
doi: 10.1002/adma.201703322
E.S. Goda, A. ur Rehman, B. Pandit, et al., Chem. Eng. J. 428 (2022) 132470.
doi: 10.1016/j.cej.2021.132470
Y. Wang, Z. Meng, X. Gong, et al., Chem. Eng. J. 431 (2022) 133980.
doi: 10.1016/j.cej.2021.133980
Y.N. Zhou, W.H. Hu, Y.N. Zhen, et al., Appl. Catal. B: Environ. 309 (2022) 121230.
doi: 10.1016/j.apcatb.2022.121230
Y. Pan, K. Sun, S. Liu, et al., J. Am. Chem. Soc. 140 (2018) 2610-2618.
doi: 10.1021/jacs.7b12420
Y. Li, R. Cao, L. Li, et al., Small 16 (2020) 1906735.
doi: 10.1002/smll.201906735
J. Wu, W. Zhong, C. Yang, et al., Appl. Catal. B: Environ. 310 (2022) 121332.
doi: 10.1016/j.apcatb.2022.121332
D. Jia, L. Han, Y. Li, et al., J. Mater. Chem. A 8 (2020) 18207-18214.
doi: 10.1039/d0ta05594h
J. Wang, C. Cai, Y. Wang, et al., ACS Catal. 11 (2021) 15135-15140.
doi: 10.1021/acscatal.1c03918
T. Hu, C. Wang, M. Wang, C.M. Li, C. Guo, ACS Catal. 11 (2021) 14417-14427.
doi: 10.1021/acscatal.1c03666
Y. Wang, H. Li, W. Zhou, et al., Angew. Chem. Int. Ed. 61 (2022) e202202604.
doi: 10.1002/anie.202202604
J. Qin, K. Wu, L. Chen, et al., J. Mater. Chem. A 10 (2022) 3963-3969.
doi: 10.1039/d1ta09441f
Y. Han, X. Zhang, W. Cai, et al., J. Colloid Interface Sci. 600 (2021) 620-628.
doi: 10.1016/j.jcis.2021.05.061
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437