Insight into the development of electrolytes for aqueous zinc metal batteries from alkaline to neutral
-
* Corresponding authors.
E-mail addresses: luosha@uestc.edu.cn (S. Luo), weisun@uestc.edu.cn (W. Sun).
Citation: An Duan, Sha Luo, Wei Sun. Insight into the development of electrolytes for aqueous zinc metal batteries from alkaline to neutral[J]. Chinese Chemical Letters, ;2024, 35(2): 108337. doi: 10.1016/j.cclet.2023.108337
M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 14 (2018) 1800561.
D. Larcher, J.M. Tarascon, Nat. Chem. 7 (2015) 19–29.
doi: 10.1038/nchem.2085
B. Scrosati, J. Hassoun, Y.K. Sun, Energy Environ. Sci. 4 (2011) 3287–3295.
doi: 10.1039/c1ee01388b
Q. Yu, K. Jiang, C. Yu, et al., Chin. Chem. Lett. 32 (2021) 2659–2678.
doi: 10.1016/j.cclet.2021.03.032
G. Jeong, Y.U. Kim, H. Kim, Y.J. Kim, H.J. Sohn, Energy Environ. Sci. 4 (2011) 1986–2002.
doi: 10.1039/c0ee00831a
Y.M. Chiang, Science 330 (2010) 1485–1486.
doi: 10.1126/science.1198591
J.M. Tarascon, M. Armand, Nature 414 (2001) 359–367.
doi: 10.1038/35104644
D. Chao, W. Zhou, F. Xie, et al., Sci. Adv. 6 (2020) eaba4098.
doi: 10.1126/sciadv.aba4098
A. Eftekhari, Adv. Energy Mater. 8 (2018) 1801156.
doi: 10.1002/aenm.201801156
X. Deng, Jiang Z, Y. Chen, et al., Chin. Chem. Lett. 34 (2023) 107389.
doi: 10.1016/j.cclet.2022.03.112
J. Yu, C.X. Zhao, J.N. Liu, et al., Green Chem. Eng. 1 (2020) 117–123.
doi: 10.1016/j.gce.2020.09.013
S. Gheytani, Y. Liang, F. Wu, et al., Adv. Sci. 4 (2017) 1700465.
doi: 10.1002/advs.201700465
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Chem. Rev. 120 (2020) 7795–7866.
doi: 10.1021/acs.chemrev.9b00628
M. Tang, H. Li, E. Wang, C. Wang, Chin. Chem. Lett. 29 (2018) 232–244.
doi: 10.1016/j.cclet.2017.09.005
B.E. Jia, A.Q. Thang, C. Yan, et al., Small 18 (2022) 2107773.
doi: 10.1002/smll.202107773
L. Su, L. Liu, Y. Wang, Y. Lu, X. Yan, Chin. Chem. Lett. 31 (2020) 2358–2364.
doi: 10.1016/j.cclet.2020.03.014
J. Shin, J. Lee, Y. Park, J.W. Choi, Chem. Sci. 11 (2020) 2028–2044.
doi: 10.1039/D0SC00022A
B. Tang, L. Shan, S. Liang, J. Zhou, Energy Environ. Sci. 12 (2019) 3288–3304.
doi: 10.1039/C9EE02526J
J. Song, K. Xu, N. Liu, D. Reed, X. Li, Mater. Today 45 (2021) 191–212.
doi: 10.1016/j.mattod.2020.12.003
N. Wang, H. Wan, J. Duan, et al., Mater. Today Adv. 11 (2021) 100149.
doi: 10.1016/j.mtadv.2021.100149
W. Shang, W. Yu, Y. Liu, et al., Energy Storage Mater. 31 (2020) 44–57.
doi: 10.1016/j.ensm.2020.05.028
L. Li, Y.C.A. Tsang, D. Xiao, et al., Nat. Commun. 13 (2022) 2870.
doi: 10.1038/s41467-022-30616-w
Z. Xu, N. Zhang, X. Wang, Nano Energy 102 (2022) 107724.
doi: 10.1016/j.nanoen.2022.107724
L. Yin, J. Scharf, J. Ma, et al., Joule 5 (2021) 228–248.
doi: 10.1016/j.joule.2020.11.008
Z. Zhao, X. Fan, J. Ding, et al., ACS Energy Lett. 4 (2019) 2259–2270.
doi: 10.1021/acsenergylett.9b01541
S. Jin, P.Y. Chen, Y. Qiu, et al., J. Am. Chem. Soc. 144 (2022) 19344–19352.
doi: 10.1021/jacs.2c06757
C. Li, S. Jin, L.A. Archer, L.F. Nazar, Joule 6 (2022) 1727–1742.
doi: 10.1016/j.joule.2022.06.019
M. Song, H. Tan, D. Chao, H.J. Fan, Adv. Funt. Mater. 28 (2018) 1802564.
doi: 10.1002/adfm.201802564
G. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 3 (2018) 2480–2501.
doi: 10.1021/acsenergylett.8b01426
D. Zhao, S. Chen, Y. Lai, et al., Nano Energy 100 (2022) 107520.
doi: 10.1016/j.nanoen.2022.107520
Y. Tian, Y. An, C. Wei, et al., Adv. Energy Mater. 11 (2021) 2002529.
doi: 10.1002/aenm.202002529
S. Huang, J. Zhu, J. Tian, Z. Niu, Chem. Eur. J. 25 (2019) 14480–14494.
doi: 10.1002/chem.201902660
J. Yin, X. Feng, Z. Gan, et al., Energy Storage Mater. 54 (2023) 623–640.
doi: 10.1016/j.ensm.2022.11.006
T. Zhang, Y. Tang, S. Guo, et al., Energy Environ. Sci. 13 (2020) 4625–4665.
doi: 10.1039/D0EE02620D
S. Chen, M. Zhang, P. Zou, B. Sun, S. Tao, Energy Environ. Sci. 15 (2022) 1805–1839.
doi: 10.1039/D2EE00004K
H. Li, S. Guo, H. Zhou, Energy Storage Mater. 56 (2023) 227–257.
doi: 10.1016/j.ensm.2023.01.027
H. Yan, X. Zhang, Z. Yang, et al., Coord. Chem. Rev. 452 (2022) 214297.
doi: 10.1016/j.ccr.2021.214297
C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, ACS Energy Lett. 6 (2021) 1015–1033.
doi: 10.1021/acsenergylett.0c02684
D. Wang, Q. Li, Y. Zhao, et al., Adv. Energy Mater. 12 (2022) 2102707.
doi: 10.1002/aenm.202102707
D. Aurbach, Electrochim. Acta 47 (2002) 3561.
doi: 10.1016/S0013-4686(02)00284-0
C.A. Vincent, Modern Batteries, 2nd ed., Elsevier, Amsterdam, 1997.
K.V. Kordesch, C. Fabjan, J.D. Ivad, J. Oliveira, J. Power Sources 65 (1997) 77–80.
doi: 10.1016/S0378-7753(97)02470-1
B. Sundén, Hydrogen, Batteries and Fuel Cells, Elsevier, Amsterdam, 2019.
D. Linden, T.B. Reddy, Linden's Handbook of Batteries, 4th ed., McGraw-Hill, New York, 2011.
F.R. McLarnon, E.J. Cairns, J. Electrochem. Soc. 138 (1991) 645–664.
doi: 10.1149/1.2085653
P. Pei, K. Wang, Z. Ma, Appl. Energy 128 (2014) 315–324.
doi: 10.1016/j.apenergy.2014.04.095
L. Binder, W. Odar, K. Kordesch, J. Power Sources 6 (1981) 271–289.
doi: 10.1016/0378-7753(81)80032-8
R. Shivkumar, G.P. Kalaignan, T. Vasudevan, J. Power Sources 55 (1995) 53–62.
doi: 10.1016/0378-7753(94)02170-8
T. Shoji, M. Hishinuma, T. Yamamoto, J. Appl. Electrochem. 18 (1987) 521–526.
C. Xu, B. Li, H. Du, F. Kang, Angew. Chem. Int. Ed. 51 (2012) 933–935.
doi: 10.1002/anie.201106307
N. Zhang, F. Cheng, Y. Liu, et al., J. Am. Chem. Soc. 138 (2016) 12894–12901.
doi: 10.1021/jacs.6b05958
L. Suo, O. Borodin, T. Gao, et al., Science 350 (2015) 938–943.
doi: 10.1126/science.aab1595
C. Zhang, J. Holoubek, X. Wu, et al., Chem. Commun. 54 (2018) 14097–14099.
doi: 10.1039/C8CC07730D
A.G. Bosca, D. Bélanger, J. Power Sources 326 (2016) 595–603.
doi: 10.1016/j.jpowsour.2016.04.088
J. Janek, W.G. Zeier, Nat. Energy 1 (2016) 16141.
doi: 10.1038/nenergy.2016.141
Y. Liang, Y. Yao, Nat. Rev. Mater. 8 (2023) 109–122.
M. Zhang, W. Wang, X. Liang, et al., Chin. Chem. Lett. 32 (2021) 2217–2221.
doi: 10.1016/j.cclet.2020.12.017
L. Zhang, D. Wu, G. Wang, et al., Chin. Chem. Lett. 32 (2021) 926–931.
doi: 10.1016/j.cclet.2020.06.037
H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Angew. Chem. Int. Ed. 60 (2020) 598–616.
J. Huang, Z. Guo, Y. Ma, et al., Small Methods 3 (2018) 1800272.
F. Beck, P. Rüetschi, Electrochim. Acta 45 (2000) 15–16.
Y.H. Zhu, Y.F. Cui, Z.L. Xie, et al., Nat. Rev. Chem. 6 (2022) 505–517.
doi: 10.1038/s41570-022-00397-3
B. Lafitte, P. Jannasch, Advances in Fuel Cells, Elsevier, Amsterdam, 2007.
Y. Tian, J. Hong, D. Cao, et al., Science 377 (2022) 315–319.
doi: 10.1126/science.abo0823
N. Agmon, Chem. Phys. Lett. 244 (1995) 456–462.
doi: 10.1016/0009-2614(95)00905-J
F. Allebrod, C. Chatzichristodoulou, P.L. Mollerup, M.B. Mogensen, Int. J. Hydrog. Energy 37 (2015) 16505–16514.
A. Carton, F. Sobron, S. Bolado, J.I. Gerboles, J. Chem. Eng. Data 40 (1995) 987–991.
doi: 10.1021/je00020a057
M. Singh, J. Kaiser, H. Hahn, J. Electrochem. Soc. 162 (2015) A1196–A1201.
doi: 10.1149/2.0401507jes
W. Wu, S. Shabhag, J. Chang, A. Rutt, J.F. Whitacre, J. Electrochem. Soc. 162 (2015) A803–A808.
doi: 10.1149/2.0121506jes
I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1 (2017) 0003.
doi: 10.1038/s41570-016-0003
S. Trasatti, J. Electroanal. Chem. 39 (1972) 163–184.
doi: 10.1016/S0022-0728(72)80485-6
D. Chao, S.Z. Qiao, Joule 4 (2020) 1846–1851.
doi: 10.1016/j.joule.2020.07.023
Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.
doi: 10.1039/C9CS00131J
D. Han, S. Wu, S. Zhang, et al., Small 16 (2020) 2001736.
doi: 10.1002/smll.202001736
Q. Li, Q. Luo, X. Liu, J. Yi, Batteries Supercaps 5 (2022) e202100417.
doi: 10.1002/batt.202100417
L. Hong, X. Wu, L.Y. Wang, et al., ACS Nano 16 (2022) 6906–6915.
doi: 10.1021/acsnano.2c02370
A.R. Mainar, O. Leonet, M. Bengoechea, et al., Int. J. Energy Res. 40 (2016) 1032–1049.
doi: 10.1002/er.3499
P.P. Wu, G.L. Song, Y.X. Zhu, D.J. Zheng, Corro. Sci. 194 (2022) 109943.
doi: 10.1016/j.corsci.2021.109943
J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.Z. Qiao, Adv. Mater. 34 (2022) 2206963.
doi: 10.1002/adma.202206963
T. Sun, X. Yuan, K. Wang, et al., J. Mater. Chem. A 9 (2021) 7042–7047.
doi: 10.1039/D0TA12409E
X. Tang, D. Zhou, B. Zhang, et al., Nat. Commun. 12 (2021) 2857.
doi: 10.1038/s41467-021-23209-6
M. Cai, S.M. Park, J. Electrochem. Soc. 143 (1996) 2125–2131.
doi: 10.1149/1.1836970
X. Zhou, Y. Lu, Q. Zhang, et al., ACS Appl. Mater. Interfaces 12 (2020) 55476–55482.
doi: 10.1021/acsami.0c17023
Z. Zhao, J. Zhao, Z. Hu, et al., Energy Environ. Sci. 12 (2019) 1938–1949.
doi: 10.1039/C9EE00596J
W. Lu, C. Xie, H. Zhang, X. Li, ChemSusChem 11 (2018) 3996–4006.
doi: 10.1002/cssc.201801657
R. Nelson, JOM 53 (2001) 28–33.
Y. Liang, Y. Jing, S. Gheytani, et al., Nat. Mater. 16 (2017) 841–848.
doi: 10.1038/nmat4919
M. Minakshi, P. Singh, M. Carter, K. Prince, Electrochem. Solid-State Lett. 11 (2008) A145–A149.
doi: 10.1149/1.2932056
M. Manickam, P. Singh, T.B. Issa, S. Thurgate, R.D. Macro, J. Power Sources 130 (2004) 254–259.
doi: 10.1016/j.jpowsour.2003.12.018
B. Wu, Y. Mu, Z. Li, et al., Chin. Chem. Lett. 34 (2023) 107629.
doi: 10.1016/j.cclet.2022.06.052
H. Zhang, Q. Liu, Y. Fang, et al., Adv. Mater. 31 (2019) 1904948.
doi: 10.1002/adma.201904948
B. Lee, H.R. Seo, H.R. Lee, et al., ChemSusChem 9 (2016) 2948–2956.
doi: 10.1002/cssc.201600702
N. Zhang, F. Cheng, J. Liu, et al., Nat. Commun. 8 (2017) 405.
doi: 10.1038/s41467-017-00467-x
G. Kasiri, R. Trócoli, A.B. Hashemi, F.L. Mantia, Electrochim. Acta 222 (2016) 74–83.
doi: 10.1016/j.electacta.2016.10.155
N.S.V. Narayanan, B.V. Ashokraj, S. Sampath, J. Colloid Interface Sci. 342 (2010) 505–512.
doi: 10.1016/j.jcis.2009.10.034
L. Wang, Y. Zhang, H. Hu, et al., ACS Appl. Mater. Interfaces 11 (2019) 42000–42005.
doi: 10.1021/acsami.9b10905
G.L. Li, Z. Yang, Y. Jiang, et al., Nano Energy 25 (2016) 211–217.
doi: 10.1016/j.nanoen.2016.04.051
W. Sun, V. Küpers, F. Wang, P. Bieker, M. Winter, Angew. Chem. Int. Ed. 61 (2022) e202207353.
doi: 10.1002/anie.202207353
D. Han, C. Cui, K. Zhang, et al., Nat. Sustain. 5 (2022) 205–213.
X. Xu, M. Song, M. Li, et al., Chem. Eng. J. 454 (2023) 140364.
doi: 10.1016/j.cej.2022.140364
Q. Liu, Y. Wang, X. Hong, et al., Adv. Energy Mater. 12 (2022) 2200318.
doi: 10.1002/aenm.202200318
K. Kordesh, M. Weissenbacher, J. Power Sources 51 (1994) 61–78.
doi: 10.1016/0378-7753(94)01955-X
J. Zhou, L. Shan, Z. Wu, et al., Chem. Commun. 54 (2018) 4457–4460.
doi: 10.1039/C8CC02250J
F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17 (2018) 543–549.
doi: 10.1038/s41563-018-0063-z
T. Liang, R. Hou, Q. Dou, H. Zhang, X. Yan, Adv. Funct. Mater. 31 (2021) 2006749.
doi: 10.1002/adfm.202006749
P. Kulkarni, D. Ghosh, R.G. Balakrishna, Sustain. Energ. Fuels 5 (2021) 1619–1654.
doi: 10.1039/D0SE01313G
M.R.H. Almeida, E.P. Barbano, M.F. Carvalho, et al., Surf. Coat. Technol. 206 (2011) 95–102.
doi: 10.1016/j.surfcoat.2011.06.050
J. Cao, D. Zhang, R. Chanajaree, et al., Adv. Powder Mater. 1 (2022) 100007.
doi: 10.1016/j.apmate.2021.09.007
C.W. Lee, K. Sathiyanarayanan, S.W. Eom, H.S. Kim, M.S. Yun, J. Power Sources 159 (2007) 1474–1477.
J. Wan, R. Wang, Z. Liu, et al., ACS Nano 17 (2023) 1610–1621.
doi: 10.1021/acsnano.2c11357
L. Lyu, Y. Gao, Y. Wang, et al., Chem. Phys. Lett. 723 (2019) 102–110.
doi: 10.1016/j.cplett.2019.02.032
Y. Wu, Z. Zhu, D. Shen, et al., Energy Storage Mater. 45 (2021) 1084–1091.
G. Koscher, K. Kordesch, J. Power Sources 136 (2004) 215–219.
doi: 10.1016/j.jpowsour.2004.03.005
J. Hao, L. Yuan, C. Ye, et al., Angew. Chem. Int. Ed. 60 (2021) 7366–7375.
doi: 10.1002/anie.202016531
N. Chang, T. Li, R. Li, et al., Energy Environ. Sci. 13 (2020) 3527–3535.
doi: 10.1039/D0EE01538E
W. Yang, X. Du, J. Zhao, et al., Joule 4 (2020) 1557–1574.
doi: 10.1016/j.joule.2020.05.018
A. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Angew. Chem. Int. Ed. 58 (2019) 2760–2764.
doi: 10.1002/anie.201813223
L. Cao, D. Li, T. Pollard, et al., Nat. Nanotechnol. 16 (2021) 902–910.
doi: 10.1038/s41565-021-00905-4
Z. Zhang, Y. Shen, Z. Zhao, et al., J. Power Sources 542 (2022) 231815.
doi: 10.1016/j.jpowsour.2022.231815
M. Yan, N. Dong, X. Zhao, Y. Sun, H. Pan, ACS Energy Lett. 6 (2021) 3236–3243.
doi: 10.1021/acsenergylett.1c01418
Y. Zhang, H. Qin, M. Alfred, et al., Energy Storage Mater. 42 (2021) 88–96.
doi: 10.1016/j.ensm.2021.07.026
F. Wan, L. Zhang, X. Dai, et al., Nat. Commun. 9 (2018) 1–11.
doi: 10.1038/s41467-017-02088-w
S. Qian, J. Zhou, M. Peng, et al., Mater. Chem. Front. 7 (2022) 901–907.
Y. Geng, L. Pan, Z. Peng, et al., Energy Storage Mater. 51 (2022) 733–755.
doi: 10.1016/j.ensm.2022.07.017
K. Liu, P. He, H. Bai, et al., Mater. Chem. Phys. 199 (2017) 73–78.
doi: 10.1016/j.matchemphys.2017.06.050
J. Hao, J. Long, B. Li, et al., Adv. Funct. Mater. 29 (2019) 1903605.
doi: 10.1002/adfm.201903605
L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Angew. Chem. Int. Ed. 59 (2020) 19292–19296.
doi: 10.1002/anie.202008634
J. Cui, X. Liu, Y. Xie, et al., Mater. Today Energy 18 (2020) 100563.
doi: 10.1016/j.mtener.2020.100563
S. Chen, C. Peng, D. Xue, L. Ma, C. Zhi, Angew. Chem. Int. Ed. 61 (2022) e202212767.
doi: 10.1002/anie.202212767
L. Cao, D. Li, E. Hu, et al., J. Am. Chem. Soc. 142 (2020) 21404–21409.
doi: 10.1021/jacs.0c09794
Y. Liu, Z. Yu, J. Chen, et al., Chin. Chem. Lett. 33 (2022) 1817–1830.
doi: 10.1016/j.cclet.2021.09.023
A. Chen, C. Zhao, J. Gao, et al., Energy Environ. Sci. 16 (2023) 275–284.
doi: 10.1039/D2EE02931F
X. Xu, H. Su, J. Zhang, et al., ACS Energy Lett. 7 (2022) 4459–4468.
doi: 10.1021/acsenergylett.2c02236
W. Zhang, Y. Dai, R. Chen, et al., Angew. Chem. Int. Ed. 62 (2023) e202212695.
doi: 10.1002/anie.202212695
M. Qiu, P. Sun, Y. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) e202210979.
doi: 10.1002/anie.202210979
J.N. Liu, C.X. Zhao, D. Ren, et al., Adv. Mater. 34 (2022) 2109407.
doi: 10.1002/adma.202109407
X.M. Liu, X. Cui, K. Dastafkan, et al., J. Energy Chem. 53 (2021) 290–302.
doi: 10.1016/j.jechem.2020.04.012
W. Cai, Y.X. Yao, G.L. Zhu, et al., Chem. Soc. Rev. 49 (2020) 3806–3833.
doi: 10.1039/C9CS00728H
J.F. Parker, J.S. Ko, D.R. Rolison, J.W. Long, Joule 2 (2018) 2519–2527.
doi: 10.1016/j.joule.2018.11.007
G. Zampardi, F.L. Mantia, Nat. Commun. 13 (2022) 687.
doi: 10.1038/s41467-022-28381-x
Chuyuan Lin , Hui Lin , Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Jingjing Zhang , Lan Ding , Vadim Popkov , Kezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407
Zhenqiang Guo , Huicong Yang , Qian Wei , Shengjun Xu , Guangjian Hu , Shuo Bai , Feng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622
Yuhuan Meng , Long Zhang , Lequan Wang , Junming Kang , Hongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Haining Peng , Huijun Liu , Chengzong Li , Yingfu Li , Qizhi Chen , Tao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385