Citation: Xin Wang, Zhichuan Wang, Zhenjian Li, Kai Sun. Trifluoromethoxylation/trifluoromethylthiolation/trifluoro-methylselenolation strategy for the construction of heterocycles[J]. Chinese Chemical Letters, ;2023, 34(5): 108045. doi: 10.1016/j.cclet.2022.108045 shu

Trifluoromethoxylation/trifluoromethylthiolation/trifluoro-methylselenolation strategy for the construction of heterocycles





  • Author Bio: Xin Wang was born in Heilongjiang, China and received her MS degree from Northeast Normal University in 2012. In July 2013, she joined the College of Chemistry and Chemical Engineering, Anyang Normal University. In 2019, she pursued her Ph.D. degree in Zhengzhou University. Her research program is drug design, structural identification and structural modification of natural products
    Zhichuan Wang was born in Jiangsu, China in 1997. In 2015, he began his studies at the School of Pharmacy, Jilin Medical University. In 2020, he pursued his MS degree in YanTai University under the direction of associate professor Kai Sun. His current research is focused on radical CH functionalization
    Zhenjian Li, Doctor, Forestry Research Institute, China Academy of Forestry, Associate researcher, Master's supervisor. He mainly engage in the research on the components and functions of medicinal Dendrobium; Collection and development of ornamental and medicinal Dendrobium germplasm resources
    Kai Sun was born in Shanxi, China in 1983. He received his Ph.D. degree in organic chemistry from Northeast Normal University in 2013 under the supervision of Prof. Qian Zhang. In July 2020, he joined the College of Chemistry and Chemical Engineering, YanTai University, where he is an professor. His current research is focused on CH functionalization, radical chemistry and organic selenium chemistry
  • * Corresponding author.
    E-mail address: sunk468@nenu.edu.cn (K. Sun).
    1 These authors contributed equally to this work.
  • Received Date: 31 October 2022
    Revised Date: 3 December 2022
    Accepted Date: 5 December 2022
    Available Online: 8 December 2022

Figures(39)

  • The XCF3 groups (X = O, S, Se) play an increasingly important role in modern organic chemistry due to their unique electronegativity, lipophilic nature, metabolic stability, and bioavailability. Heterocyclic compounds are important scaffolds in many bioactive compounds and drugs. The incorporation of XCF3 groups into heterocyclic compounds can change their physicochemical and biological properties, which injects new vitality into the application of heterocyclic compounds in many fields such as organic chemistry, the pharmaceutical chemistry, and life sciences. In this paper, the recent progress in the synthesis of F3CX-containing heterocycles is reviewed, and the application scope and mechanism of some reactions are discussed.
  • 加载中
    1. [1]

      K. Müller, C. Faeh, F. Diederich, Science 317 (2007) 1881–1886.  doi: 10.1126/science.1131943

    2. [2]

      E.P. Gillis, K.J. Eastman, M.D. Hill, et al., J. Med. Chem. 58 (2015) 8315–8359.  doi: 10.1021/acs.jmedchem.5b00258

    3. [3]

      S. Tang, Y.L. Deng, J. Li, et al., J. Org. Chem. 80 (2015) 12599–12605.  doi: 10.1021/acs.joc.5b01803

    4. [4]

      S.W. Wang, J. Yu, Q.Y. Zhou, et al., ACS Sustain. Chem. Eng. 7 (2019) 10154–10162.  doi: 10.1021/acssuschemeng.9b02178

    5. [5]

      Y. Ogawa, E. Tokunaga, O. Kobayashi, et al., iScience 23 (2020) 101467.  doi: 10.1016/j.isci.2020.101467

    6. [6]

      H.B. Mei, A.M. Remete, Y.P. Zou, et al., Chin. Chem. Lett. 31 (2020) 2401–2413.  doi: 10.1016/j.cclet.2020.03.050

    7. [7]

      Y.J. Yu, A.Y. Liu, G. Dhawan, et al., Chin. Chem. Lett. 32 (2021) 3342–3354.  doi: 10.1016/j.cclet.2021.05.042

    8. [8]

      X. Wang, J. Lei, Y.J. Liu, et al., Org. Chem. Front. 8 (2021) 2079–2109.  doi: 10.1039/d0qo01629b

    9. [9]

      N. Chen, J. Lei, Z.C. Wang, et al., Chin. J. Org. Chem. 42 (2022) 1061–1084.  doi: 10.6023/cjoc202109033

    10. [10]

      A. Leo, C. Hansch, D. Elkins, Chem. Rev. 71 (1971) 525–616.  doi: 10.1021/cr60274a001

    11. [11]

      C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91 (1991) 165–195.  doi: 10.1021/cr00002a004

    12. [12]

      Q. Glenadel, E. Ismalaj, T. Billard, Eur. J. Org. Chem. 2017 (2017) 530–533.  doi: 10.1002/ejoc.201601526

    13. [13]

      Y.Y. Xie, Y.C. Wang, H.E. Qu, et al., Adv. Synth. Catal. 356 (2014) 3347–3355.  doi: 10.1002/adsc.201400315

    14. [14]

      Y.H. Lv, J.P. Meng, C. Li, et al., Adv. Synth. Catal. 363 (2021) 5235–5265.  doi: 10.1002/adsc.202101184

    15. [15]

      X. Wang, Y. Zhang, K. Sun, et al., Chin. J. Org. Chem. 41 (2021) 4588–4609.  doi: 10.6023/cjoc202109046

    16. [16]

      H. Sheng, Q. Liu, F. Chen, et al., Chin. Chem. Lett. 33 (2022) 4298–4302.  doi: 10.1016/j.cclet.2022.01.028

    17. [17]

      X. Wang, J. Lei, S. Guo, et al., Chem. Commun. 58 (2022) 1526–1529.  doi: 10.1039/d1cc06323e

    18. [18]

      M.W. Yu, Z. Zhou, Y.W. Chen, et al., Org. Lett. 24 (2022) 4886–4891.  doi: 10.1021/acs.orglett.2c01680

    19. [19]

      J. Njardarson, Top 200 brand name drugs by retail sales in 2021. https://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/files/Top%20200%20Pharmaceuticals%202021V2.pdf.

    20. [20]

      X.H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 115 (2015) 731–764.  doi: 10.1021/cr500193b

    21. [21]

      M. Li, J. Guo, X.S. Xue, J.P. Cheng, Org. Lett. 18 (2016) 264–267.  doi: 10.1021/acs.orglett.5b03433

    22. [22]

      X.H. Yang, D. Chang, R. Zhao, L. Shi, Asian J. Org. Chem. 10 (2021) 61–73.  doi: 10.1002/ajoc.202000575

    23. [23]

      X.H. Jiang, P.P. Tang, Chin. J. Chem. 39 (2021) 255–264.  doi: 10.1002/cjoc.202000465

    24. [24]

      K.N. Lee, J.W. Lee, M.Y. Ngai, Tetrahedron 74 (2018) 7127–7135.  doi: 10.1016/j.tet.2018.09.020

    25. [25]

      Y. Cao, N.Y. Xu, A. Issakhov, et al., J. Fluor. Chem. 252 (2021) 109901.  doi: 10.1016/j.jfluchem.2021.109901

    26. [26]

      Y.M. Li, J.F. Fu, L.Q. He, et al., RSC Adv. 11 (2021) 24474–24486.  doi: 10.1039/D1RA02606B

    27. [27]

      B. Sahoo, M.N. Hopkinson, Angew. Chem. Int. Ed. 57 (2018) 7942–7944.  doi: 10.1002/anie.201804939

    28. [28]

      J.W. Lee, K.N. Lee, M.Y. Ngai, Angew. Chem. Int. Ed. 58 (2019) 11171–11181.  doi: 10.1002/anie.201902243

    29. [29]

      M. Hamzehloo, A. Hosseinian, S. Ebrahimiasl, et al., J. Fluor. Chem. 224 (2019) 52–60.  doi: 10.1016/j.jfluchem.2019.05.004

    30. [30]

      M.A. Hardy, H. Chachignon, D. Cahard, Asian J. Org. Chem. 8 (2019) 591–609.  doi: 10.1002/ajoc.201900004

    31. [31]

      A.L. Barthelemy, E. Magnier, Guillaume Dagousset, Synthesis (Mass) 50 (2018) 4765–4776.  doi: 10.1055/s-0037-1611278

    32. [32]

      A. Hassanpour, M.R.P. Heravi, A. Ebadi, et al., J. Fluor. Chem. 245 (2021) 109762.  doi: 10.1016/j.jfluchem.2021.109762

    33. [33]

      H.N. Wang, J.Y. Dong, J. Shi, C.P. Zhang, Tetrahedron 99 (2021) 132476.  doi: 10.1016/j.tet.2021.132476

    34. [34]

      D. Louvel, C. Ghiazza, V. Debrauwer, et al., Chem. Rec. 21 (2021) 417–426.  doi: 10.1002/tcr.202000184

    35. [35]

      Y.D. Yang, A. Azuma, E. Tokunaga, et al., J. Am. Chem. Soc. 135 (2013) 8782–8785.  doi: 10.1021/ja402455f

    36. [36]

      Q. Wang, Z.S. Qi, F. Xie, X.W. Li, Adv. Synth. Catal. 357 (2015) 355–360.  doi: 10.1002/adsc.201400717

    37. [37]

      Q. Wang, F. Xie, X.W. Li, J. Org. Chem. 80 (2015) 8361–8366.  doi: 10.1021/acs.joc.5b00940

    38. [38]

      Z.Y. Huang, Y.D. Yang, E. Tokunaga, N. Shibata, Org. Lett. 17 (2015) 1094–1097.  doi: 10.1021/ol503616y

    39. [39]

      H. Chachignon, M. Maeno, H. Kondo, et al., Org. Lett. 18 (2016) 2467–2470.  doi: 10.1021/acs.orglett.6b01026

    40. [40]

      M.J. Bu, G.P. Lua, C. Cai, Org. Chem. Front. 4 (2017) 266–270.  doi: 10.1039/C6QO00622A

    41. [41]

      D.W. Sun, X. Jiang, M. Jiang, et al., Eur. J. Org. Chem. 2018 (2018) 2078–2081.  doi: 10.1002/ejoc.201800249

    42. [42]

      J.Y. Guo, R.H. Dai, W.C. Xu, et al., Chem. Commun. 54 (2018) 8980–8982.  doi: 10.1039/C8CC04600J

    43. [43]

      L.Q. Jiang, Q. Yan, R.K. Wang, et al., Chem. Eur. J. 24 (2018) 18749–18756.  doi: 10.1002/chem.201804027

    44. [44]

      F. Yin, X.S. Wang, Org. Lett. 16 (2014) 1128–1131.  doi: 10.1021/ol403739w

    45. [45]

      L.P. Zhu, G.Q. Wang, Q.P. Guo, et al., Org. Lett. 16 (2014) 5390–5393.  doi: 10.1021/ol502624z

    46. [46]

      N. Fuentes, W.Q. Kong, L. Fernandez-Sanchez, et al., J. Am. Chem. Soc. 137 (2015) 964–973.  doi: 10.1021/ja5115858

    47. [47]

      D.P. Jin, P. Gao, D.Q. Chen, et al., Org. Lett. 18 (2016) 3486–3489.  doi: 10.1021/acs.orglett.6b01702

    48. [48]

      X. Liu, R. An, X.L. Zhang, et al., Angew. Chem. Int. Ed. 55 (2016) 5846–5850.  doi: 10.1002/anie.201601713

    49. [49]

      J. Luo, Y.N. Liu, X.D. Zhao, Org. Lett. 19 (2017) 3434–3437.  doi: 10.1021/acs.orglett.7b01392

    50. [50]

      S. Pan, Y.G. Huang, X.H. Xu, F.L. Qing, Org. Lett. 19 (2017) 4624–4627.  doi: 10.1021/acs.orglett.7b02249

    51. [51]

      G. Dagousset, C. Simon, E. Anselmi, et al., Chem. Eur. J. 23 (2017) 4282–4286.  doi: 10.1002/chem.201700734

    52. [52]

      Y.M. Ren, Q.Q. Yan, Y. Li, et al., J. Org. Chem. 87 (2022) 8773–8781.  doi: 10.1021/acs.joc.2c00623

    53. [53]

      X.Y. Chen, C.C. Pei, B. Liu, et al., Chem. Commun. 58 (2022) 8674–8677.  doi: 10.1039/d2cc02171d

    54. [54]

      L. Wang, L. Xie, Z.G. Fang, et al., Org. Chem. Front. 9 (2022) 3061–3067.  doi: 10.1039/D2QO00207H

    55. [55]

      W. Zheng, J.W. Lee, C.A. Morales-Rivera, et al., Angew. Chem. Int. Ed. 57 (2018) 13795–13799.  doi: 10.1002/anie.201808495

    56. [56]

      Z.J. Deng, M.X. Zhao, F. Wang, P.P. Tang, Nat. Commun. 11 (2020) 2569–2577.  doi: 10.1038/s41467-020-16451-x

    57. [57]

      C.H. Chen, P.H. Chen, G.S. Liu, J. Am. Chem. Soc. 137 (2015) 15648–15651.  doi: 10.1021/jacs.5b10971

    58. [58]

      J.B. Liu, C. Chen, L.L. Chu, et al., Angew. Chem. Int. Ed. 54 (2015) 11839–11842.  doi: 10.1002/anie.201506329

    59. [59]

      P.J. Feng, K.N. Lee, J.W. Lee, et al., Chem. Sci. 7 (2016) 424–429.  doi: 10.1039/C5SC02983J

    60. [60]

      A.P. Liang, S.J. Han, Z.W. Liu, et al., Chem. Eur. J. 22 (2016) 5102–5106.  doi: 10.1002/chem.201505181

    61. [61]

      K. Sun, S.N. Wang, R. R, Feng, et al., Org. Lett. 21 (2019) 2052–2055.  doi: 10.1021/acs.orglett.9b00240

    62. [62]

      K. Sun, X. Wang, C. Li, et al., Org. Chem. Front. 7 (2020) 3100–3119.  doi: 10.1039/d0qo00849d

    63. [63]

      X. Wang, J.P. Meng, D.Y. Zhao, et al., Chin. Chem. Lett. 34 (2023) 107736.  doi: 10.1016/j.cclet.2022.08.016

    64. [64]

      H.F. Shi, X.Z. Wang, X.X. Li, et al., Org. Lett. 24 (2022) 2214–2219.  doi: 10.1021/acs.orglett.2c00563

    65. [65]

      C. Ghiazza, M. Ndiaye, A. Hamdi, et al., Tetrahedron Lett. 74 (2018) 6521–6526.  doi: 10.1016/j.tet.2018.09.048

    66. [66]

      X. Zhao, X.F. Wei, M.M. Tian, et al., Tetrahedron Lett. 60 (2019) 1796–1799.  doi: 10.1016/j.tetlet.2019.06.002

    67. [67]

      Q.Y. Han, C.L. Zhao, T. Dong, et al., Org. Chem. Front. 6 (2019) 2732–2737.  doi: 10.1039/c9qo00631a

    68. [68]

      A.D. Zordo-Banliat, L. Barthélémy, F. Bourdreux, et al., Eur. J. Org. Chem. 2020 (2020) 506–509.

    69. [69]

      J.Y. Liu, M.M. Tian, A.K. Li, et al., Tetrahedron Lett. 66 (2021) 152809.  doi: 10.1016/j.tetlet.2020.152809

    70. [70]

      K.L. Tan, H.N. Wang, T. Dong, C.P. Zhang, Org. Biomol. Chem. 19 (2021) 5368–5376.  doi: 10.1039/d1ob00842k

    71. [71]

      Q. Glenadel, E. Ismalaj, T. Billard, Org. Lett. 20 (2018) 56–59.  doi: 10.1021/acs.orglett.7b03338

    72. [72]

      H. Wang, Y.F. Yao, Z.P. Zhang, et al., J. Org. Chem. 87 (2022) 3605–3612.  doi: 10.1021/acs.joc.1c03156

    73. [73]

      L.H. Lu, X.J. Zhao, W. Dessie, et al., Org. Biomol. Chem. 20 (2022) 1754–1758.  doi: 10.1039/d1ob02402g

    74. [74]

      H. Wang, Y.F. Yao, Y. You, et al., Org. Biomol. Chem. 20 (2022) 2115–2120.  doi: 10.1039/d2ob00063f

  • 加载中
    1. [1]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    2. [2]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    3. [3]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    4. [4]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

Metrics
  • PDF Downloads(13)
  • Abstract views(525)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return