Trifluoromethoxylation/trifluoromethylthiolation/trifluoro-methylselenolation strategy for the construction of heterocycles
* Corresponding author.
E-mail address: sunk468@nenu.edu.cn (K. Sun).
1 These authors contributed equally to this work.
Citation: Xin Wang, Zhichuan Wang, Zhenjian Li, Kai Sun. Trifluoromethoxylation/trifluoromethylthiolation/trifluoro-methylselenolation strategy for the construction of heterocycles[J]. Chinese Chemical Letters, ;2023, 34(5): 108045. doi: 10.1016/j.cclet.2022.108045
K. Müller, C. Faeh, F. Diederich, Science 317 (2007) 1881–1886.
doi: 10.1126/science.1131943
E.P. Gillis, K.J. Eastman, M.D. Hill, et al., J. Med. Chem. 58 (2015) 8315–8359.
doi: 10.1021/acs.jmedchem.5b00258
S. Tang, Y.L. Deng, J. Li, et al., J. Org. Chem. 80 (2015) 12599–12605.
doi: 10.1021/acs.joc.5b01803
S.W. Wang, J. Yu, Q.Y. Zhou, et al., ACS Sustain. Chem. Eng. 7 (2019) 10154–10162.
doi: 10.1021/acssuschemeng.9b02178
Y. Ogawa, E. Tokunaga, O. Kobayashi, et al., iScience 23 (2020) 101467.
doi: 10.1016/j.isci.2020.101467
H.B. Mei, A.M. Remete, Y.P. Zou, et al., Chin. Chem. Lett. 31 (2020) 2401–2413.
doi: 10.1016/j.cclet.2020.03.050
Y.J. Yu, A.Y. Liu, G. Dhawan, et al., Chin. Chem. Lett. 32 (2021) 3342–3354.
doi: 10.1016/j.cclet.2021.05.042
X. Wang, J. Lei, Y.J. Liu, et al., Org. Chem. Front. 8 (2021) 2079–2109.
doi: 10.1039/d0qo01629b
N. Chen, J. Lei, Z.C. Wang, et al., Chin. J. Org. Chem. 42 (2022) 1061–1084.
doi: 10.6023/cjoc202109033
A. Leo, C. Hansch, D. Elkins, Chem. Rev. 71 (1971) 525–616.
doi: 10.1021/cr60274a001
C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91 (1991) 165–195.
doi: 10.1021/cr00002a004
Q. Glenadel, E. Ismalaj, T. Billard, Eur. J. Org. Chem. 2017 (2017) 530–533.
doi: 10.1002/ejoc.201601526
Y.Y. Xie, Y.C. Wang, H.E. Qu, et al., Adv. Synth. Catal. 356 (2014) 3347–3355.
doi: 10.1002/adsc.201400315
Y.H. Lv, J.P. Meng, C. Li, et al., Adv. Synth. Catal. 363 (2021) 5235–5265.
doi: 10.1002/adsc.202101184
X. Wang, Y. Zhang, K. Sun, et al., Chin. J. Org. Chem. 41 (2021) 4588–4609.
doi: 10.6023/cjoc202109046
H. Sheng, Q. Liu, F. Chen, et al., Chin. Chem. Lett. 33 (2022) 4298–4302.
doi: 10.1016/j.cclet.2022.01.028
X. Wang, J. Lei, S. Guo, et al., Chem. Commun. 58 (2022) 1526–1529.
doi: 10.1039/d1cc06323e
M.W. Yu, Z. Zhou, Y.W. Chen, et al., Org. Lett. 24 (2022) 4886–4891.
doi: 10.1021/acs.orglett.2c01680
J. Njardarson, Top 200 brand name drugs by retail sales in 2021.
X.H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 115 (2015) 731–764.
doi: 10.1021/cr500193b
M. Li, J. Guo, X.S. Xue, J.P. Cheng, Org. Lett. 18 (2016) 264–267.
doi: 10.1021/acs.orglett.5b03433
X.H. Yang, D. Chang, R. Zhao, L. Shi, Asian J. Org. Chem. 10 (2021) 61–73.
doi: 10.1002/ajoc.202000575
X.H. Jiang, P.P. Tang, Chin. J. Chem. 39 (2021) 255–264.
doi: 10.1002/cjoc.202000465
K.N. Lee, J.W. Lee, M.Y. Ngai, Tetrahedron 74 (2018) 7127–7135.
doi: 10.1016/j.tet.2018.09.020
Y. Cao, N.Y. Xu, A. Issakhov, et al., J. Fluor. Chem. 252 (2021) 109901.
doi: 10.1016/j.jfluchem.2021.109901
Y.M. Li, J.F. Fu, L.Q. He, et al., RSC Adv. 11 (2021) 24474–24486.
doi: 10.1039/D1RA02606B
B. Sahoo, M.N. Hopkinson, Angew. Chem. Int. Ed. 57 (2018) 7942–7944.
doi: 10.1002/anie.201804939
J.W. Lee, K.N. Lee, M.Y. Ngai, Angew. Chem. Int. Ed. 58 (2019) 11171–11181.
doi: 10.1002/anie.201902243
M. Hamzehloo, A. Hosseinian, S. Ebrahimiasl, et al., J. Fluor. Chem. 224 (2019) 52–60.
doi: 10.1016/j.jfluchem.2019.05.004
M.A. Hardy, H. Chachignon, D. Cahard, Asian J. Org. Chem. 8 (2019) 591–609.
doi: 10.1002/ajoc.201900004
A.L. Barthelemy, E. Magnier, Guillaume Dagousset, Synthesis (Mass) 50 (2018) 4765–4776.
doi: 10.1055/s-0037-1611278
A. Hassanpour, M.R.P. Heravi, A. Ebadi, et al., J. Fluor. Chem. 245 (2021) 109762.
doi: 10.1016/j.jfluchem.2021.109762
H.N. Wang, J.Y. Dong, J. Shi, C.P. Zhang, Tetrahedron 99 (2021) 132476.
doi: 10.1016/j.tet.2021.132476
D. Louvel, C. Ghiazza, V. Debrauwer, et al., Chem. Rec. 21 (2021) 417–426.
doi: 10.1002/tcr.202000184
Y.D. Yang, A. Azuma, E. Tokunaga, et al., J. Am. Chem. Soc. 135 (2013) 8782–8785.
doi: 10.1021/ja402455f
Q. Wang, Z.S. Qi, F. Xie, X.W. Li, Adv. Synth. Catal. 357 (2015) 355–360.
doi: 10.1002/adsc.201400717
Q. Wang, F. Xie, X.W. Li, J. Org. Chem. 80 (2015) 8361–8366.
doi: 10.1021/acs.joc.5b00940
Z.Y. Huang, Y.D. Yang, E. Tokunaga, N. Shibata, Org. Lett. 17 (2015) 1094–1097.
doi: 10.1021/ol503616y
H. Chachignon, M. Maeno, H. Kondo, et al., Org. Lett. 18 (2016) 2467–2470.
doi: 10.1021/acs.orglett.6b01026
M.J. Bu, G.P. Lua, C. Cai, Org. Chem. Front. 4 (2017) 266–270.
doi: 10.1039/C6QO00622A
D.W. Sun, X. Jiang, M. Jiang, et al., Eur. J. Org. Chem. 2018 (2018) 2078–2081.
doi: 10.1002/ejoc.201800249
J.Y. Guo, R.H. Dai, W.C. Xu, et al., Chem. Commun. 54 (2018) 8980–8982.
doi: 10.1039/C8CC04600J
L.Q. Jiang, Q. Yan, R.K. Wang, et al., Chem. Eur. J. 24 (2018) 18749–18756.
doi: 10.1002/chem.201804027
F. Yin, X.S. Wang, Org. Lett. 16 (2014) 1128–1131.
doi: 10.1021/ol403739w
L.P. Zhu, G.Q. Wang, Q.P. Guo, et al., Org. Lett. 16 (2014) 5390–5393.
doi: 10.1021/ol502624z
N. Fuentes, W.Q. Kong, L. Fernandez-Sanchez, et al., J. Am. Chem. Soc. 137 (2015) 964–973.
doi: 10.1021/ja5115858
D.P. Jin, P. Gao, D.Q. Chen, et al., Org. Lett. 18 (2016) 3486–3489.
doi: 10.1021/acs.orglett.6b01702
X. Liu, R. An, X.L. Zhang, et al., Angew. Chem. Int. Ed. 55 (2016) 5846–5850.
doi: 10.1002/anie.201601713
J. Luo, Y.N. Liu, X.D. Zhao, Org. Lett. 19 (2017) 3434–3437.
doi: 10.1021/acs.orglett.7b01392
S. Pan, Y.G. Huang, X.H. Xu, F.L. Qing, Org. Lett. 19 (2017) 4624–4627.
doi: 10.1021/acs.orglett.7b02249
G. Dagousset, C. Simon, E. Anselmi, et al., Chem. Eur. J. 23 (2017) 4282–4286.
doi: 10.1002/chem.201700734
Y.M. Ren, Q.Q. Yan, Y. Li, et al., J. Org. Chem. 87 (2022) 8773–8781.
doi: 10.1021/acs.joc.2c00623
X.Y. Chen, C.C. Pei, B. Liu, et al., Chem. Commun. 58 (2022) 8674–8677.
doi: 10.1039/d2cc02171d
L. Wang, L. Xie, Z.G. Fang, et al., Org. Chem. Front. 9 (2022) 3061–3067.
doi: 10.1039/D2QO00207H
W. Zheng, J.W. Lee, C.A. Morales-Rivera, et al., Angew. Chem. Int. Ed. 57 (2018) 13795–13799.
doi: 10.1002/anie.201808495
Z.J. Deng, M.X. Zhao, F. Wang, P.P. Tang, Nat. Commun. 11 (2020) 2569–2577.
doi: 10.1038/s41467-020-16451-x
C.H. Chen, P.H. Chen, G.S. Liu, J. Am. Chem. Soc. 137 (2015) 15648–15651.
doi: 10.1021/jacs.5b10971
J.B. Liu, C. Chen, L.L. Chu, et al., Angew. Chem. Int. Ed. 54 (2015) 11839–11842.
doi: 10.1002/anie.201506329
P.J. Feng, K.N. Lee, J.W. Lee, et al., Chem. Sci. 7 (2016) 424–429.
doi: 10.1039/C5SC02983J
A.P. Liang, S.J. Han, Z.W. Liu, et al., Chem. Eur. J. 22 (2016) 5102–5106.
doi: 10.1002/chem.201505181
K. Sun, S.N. Wang, R. R, Feng, et al., Org. Lett. 21 (2019) 2052–2055.
doi: 10.1021/acs.orglett.9b00240
K. Sun, X. Wang, C. Li, et al., Org. Chem. Front. 7 (2020) 3100–3119.
doi: 10.1039/d0qo00849d
X. Wang, J.P. Meng, D.Y. Zhao, et al., Chin. Chem. Lett. 34 (2023) 107736.
doi: 10.1016/j.cclet.2022.08.016
H.F. Shi, X.Z. Wang, X.X. Li, et al., Org. Lett. 24 (2022) 2214–2219.
doi: 10.1021/acs.orglett.2c00563
C. Ghiazza, M. Ndiaye, A. Hamdi, et al., Tetrahedron Lett. 74 (2018) 6521–6526.
doi: 10.1016/j.tet.2018.09.048
X. Zhao, X.F. Wei, M.M. Tian, et al., Tetrahedron Lett. 60 (2019) 1796–1799.
doi: 10.1016/j.tetlet.2019.06.002
Q.Y. Han, C.L. Zhao, T. Dong, et al., Org. Chem. Front. 6 (2019) 2732–2737.
doi: 10.1039/c9qo00631a
A.D. Zordo-Banliat, L. Barthélémy, F. Bourdreux, et al., Eur. J. Org. Chem. 2020 (2020) 506–509.
J.Y. Liu, M.M. Tian, A.K. Li, et al., Tetrahedron Lett. 66 (2021) 152809.
doi: 10.1016/j.tetlet.2020.152809
K.L. Tan, H.N. Wang, T. Dong, C.P. Zhang, Org. Biomol. Chem. 19 (2021) 5368–5376.
doi: 10.1039/d1ob00842k
Q. Glenadel, E. Ismalaj, T. Billard, Org. Lett. 20 (2018) 56–59.
doi: 10.1021/acs.orglett.7b03338
H. Wang, Y.F. Yao, Z.P. Zhang, et al., J. Org. Chem. 87 (2022) 3605–3612.
doi: 10.1021/acs.joc.1c03156
L.H. Lu, X.J. Zhao, W. Dessie, et al., Org. Biomol. Chem. 20 (2022) 1754–1758.
doi: 10.1039/d1ob02402g
H. Wang, Y.F. Yao, Y. You, et al., Org. Biomol. Chem. 20 (2022) 2115–2120.
doi: 10.1039/d2ob00063f
Yaping Zhang , Wei Zhou , Mingchun Gao , Tianqi Liu , Bingxin Liu , Chang-Hua Ding , Bin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836
Yi-Fan Wang , Hao-Yun Yu , Hao Xu , Ya-Jie Wang , Xiaodi Yang , Yu-Hui Wang , Ping Tian , Guo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520
Xinghui Yao , Zhouyu Wang , Da-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916
Ke Zhang , Sheng Zuo , Pengyuan You , Tong Ru , Fen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157