Highly efficient electrocatalytic deuteration of acetylene to deuterated ethylene using deuterium oxide
-
* Corresponding author.
E-mail address: zhangjian@nwpu.edu.cn (J. Zhang).
Citation: Siyu Chang, Jun Bu, Jinjin Li, Jin Lin, Zhenpeng Liu, Wenxiu Ma, Jian Zhang. Highly efficient electrocatalytic deuteration of acetylene to deuterated ethylene using deuterium oxide[J]. Chinese Chemical Letters, ;2023, 34(5): 107765. doi: 10.1016/j.cclet.2022.107765
K.K. Irikura, J. Phys. Chem. Ref. Data 36 (2007) 389–397.
doi: 10.1063/1.2436891
B. Belleau, J. Burba, Science 133 (1961) 102–104.
doi: 10.1126/science.133.3446.102
R. Lowery, M.I. Gibson, R.L. Thompson, et al., Chem. Commun. 51 (2015) 4838–4841.
doi: 10.1039/C4CC09588J
E.M. Simmons, J.F. Hartwig, Angew. Chem. Int. Ed. 51 (2012) 3066–3072.
doi: 10.1002/anie.201107334
M. Liu, Y. Zheng, Q. Chen, et al., J. Nucl. Mater. 535 (2020) 152–159.
T.R. Puleo, A.J. Strong, J.S. Bandar, J. Am. Chem. Soc. 141 (2019) 1467–1472.
doi: 10.1021/jacs.8b12874
A. Di Giuseppe, R. Castarlenas, J.J. Perez-Torrente, et al., Angew. Chem. Int. Ed. 50 (2011) 3938–3942.
doi: 10.1002/anie.201007238
S.K.S. Tse, P. Xue, Z. Lin, et al., Adv. Synth. Catal. 352 (2010) 1512–1522.
doi: 10.1002/adsc.201000037
E. Shirakawa, H. Otsuka, T. Hayashi, Chem. Commun. 37 (2005) 5885–5886.
G. Erdogan, D.B. Grotjahn, J. Am. Chem. Soc. 131 (2009) 10354–10355.
doi: 10.1021/ja903519a
J. Atzrodt, V. Derdau, W.J. Kerr, et al., Angew. Chem. Int. Ed. 57 (2018) 3022–3047.
doi: 10.1002/anie.201708903
M. Tinga, G. Schat, O.S. Akkerman, et al., J. Am. Chem. Soc. 115 (1993) 2808–2817.
doi: 10.1021/ja00060a030
K. Harada, H. Urabe, F. Sato, Tetrahedron Lett. 36 (1995) 3203–3206.
doi: 10.1016/0040-4039(95)00513-C
J.C.T.E.M. Richards, R.S. Ward, D.H. Williams, J. Chem. Soc. 11 (1969) 1542–1544.
Y. Yabe, Y. Sawama, Y. Monguchi, et al., Chem. Eur. J. 19 (2013) 484–488.
doi: 10.1002/chem.201203337
Y. Wang, Z. Huang, X. Leng, et al., J. Am. Chem. Soc. 140 (2018) 4417–4429.
doi: 10.1021/jacs.8b01038
M. Han, Y. Ding, Y. Yan, et al., Org. Lett. 20 (2018) 3010–3013.
doi: 10.1021/acs.orglett.8b01036
Y. Kataoka, K. Takai, K. Oshima, et al., J. Org. Chem. 57 (1992) 1615–1618.
doi: 10.1021/jo00031a057
Y. Wu, C. Liu, C. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 21170–21175.
doi: 10.1002/anie.202009757
A. Kurimoto, R.S. Sherbo, Y. Cao, et al., Nat. Catal. 3 (2020) 719–726.
doi: 10.1038/s41929-020-0488-z
J. Bu, Z. Liu, W. Ma, et al., Nat. Catal. 4 (2021) 557–564.
doi: 10.1038/s41929-021-00641-x
L. Zhang, Z. Chen, Z. Liu, et al., Nat. Commun. 12 (2021) 6574.
doi: 10.1038/s41467-021-26853-0
Z. Lu, W. Xu, W. Zhu, et al., Chem. Commun. 50 (2014) 6479–6482.
doi: 10.1039/C4CC01625D
Z. -S. Cai, Y. Shi, S. -S. Bao, et al., ACS Catal. 8 (2018) 3895–3902.
doi: 10.1021/acscatal.7b04276
J. Moon, Y. Cheng, L.L. Daemen, et al., ACS Catal. 10 (2020) 5278–5287.
doi: 10.1021/acscatal.0c00808
A.V. Ivanov, A.E. Koklin, E.B. Uvarova, et al., Phy. Chem. Chem. Phys. 5 (2003) 4718–4723.
doi: 10.1039/b307138c
J.D. Krooswyk, I. Waluyo, M. Trenary, ACS Catal. 5 (2015) 4725–4733.
doi: 10.1021/acscatal.5b00942
R. Deng, J. Jones, M. Trenary, J. Phy. Chem. C 111 (2007) 1459–1466.
doi: 10.1021/jp065710r
L. Letendre, D.K. Liu, C.D. Pibel, et al., J. Chem. Phys. 112 (2000) 9209–9212.
doi: 10.1063/1.481542
B.L. Crawford, J.E. Lancaster, R.G. Inskeep, J. Chem. Phys. 21 (1953) 678–686.
doi: 10.1063/1.1698989
W.L. Parker, A.R. Siedle, R.M. Hexter, J. Am. Chem. Soc. 107 (1985) 264–266.
doi: 10.1021/ja00287a055
K. Manzel, W. Schulze, M. Moskovits, Chem. Phy. Lett. 85 (1982) 183–186.
doi: 10.1016/0009-2614(82)80328-X
M.L. Patterson, M.J. Weaver, J. Phys. Chem. 89 (1985) 5046–5051.
doi: 10.1021/j100269a032
M.F. Mrozek, M.J. Weaver, J. Phys. Chem. B 105 (2001) 8931–8937.
M. de Hemptinne, J. Jungers, J. Delfrosse, Nature 140 (1937) 323–324.
doi: 10.1038/140323a0
C.M. M de Hemptinne, Proc. Indian Acad. Sci. 9 (1939) 286–302.
doi: 10.1007/BF03046468
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334