Citation: Yuliang Zhao, Chunying Chen, Weiyue Feng, Zhiyong Zhang, Diandou Xu, Weiqun Shi, Shuao Wang, Yu-Feng Li. Professor Zhifang Chai: Scientific contributions and achievements[J]. Chinese Chemical Letters, ;2022, 33(7): 3297-3302. doi: 10.1016/j.cclet.2022.04.007 shu

Professor Zhifang Chai: Scientific contributions and achievements

Figures(7)

  • 加载中
    1. [1]

      Z. Chai, Environ. Sci. (1978) 59–62.

    2. [2]

      Z.F. Chai, Z.Y. Zhang, W.Y. Feng, et al., J. Anal. At. Spectrom. 19 (2004) 26-33.  doi: 10.1039/b307337h

    3. [3]

      C. Chai, X. Mao, Y. Wang, et al., Fresenius' J. Anal. Chem. 363 (1999) 477-480.  doi: 10.1007/s002160051227

    4. [4]

      C. Chen, P. Zhang, Z. Chai, Anal. Chim. Acta439 (2001) 19-27.  doi: 10.1016/S0003-2670(01)01024-8

    5. [5]

      C. Chen, X. Lu, P. Zhang, X. Hou, Z. Chai, J. Radioanal. Nucl. Chem. 244 (2000) 199-203.  doi: 10.1023/A:1006701206935

    6. [6]

      P. Kong, Z. Chai, Chin. J. Geol. 28 (1993) 87-92.

    7. [7]

      C.F. Chai, P. Kong, X.Y. Mao, S.L. Ma, J. Radioanal. Nucl. Chem. 192 (1995) 101-108.  doi: 10.1007/BF02037742

    8. [8]

      X. Dai, Z. Chai, X. Mao, et al., Anal. Chim. Acta403 (2000) 243-247.  doi: 10.1016/S0003-2670(99)00592-9

    9. [9]

      X. Dai, Z. Chai, X. Mao, H. Ouyang, Chem. Geol. 166 (2000) 15-22.  doi: 10.1016/S0009-2541(99)00183-7

    10. [10]

      C. Li, C. Chai, X. Yang, X. Hou, X. Mao, Talanta44 (1997) 1313-1317.  doi: 10.1016/S0039-9140(97)00027-1

    11. [11]

      Z. Chai, P. Kong, X. Mao, J. Ma, S. Ma, Chin. Sci. Bull. (1991) 666-669.

    12. [12]

      Z. Zhang, Y. Wang, J. Wang, et al., Chin. Sci. Bull. 45 (2000) 502-505.

    13. [13]

      Y. Wang, J. Sun, H. Chen, et al., Sci. China Chem. 41 (1998) 266-271.  doi: 10.1007/BF02879706

    14. [14]

      F. Li, Y. Wang, Z. Zhang, et al., J. Radioanal. Nucl. Chem. 251 (2002) 437-441.  doi: 10.1023/A:1014886226165

    15. [15]

      H. Xiao, Z. Zhang, F. Li, et al., Biolog. Trace Elem. Res. 104 (2005) 33-40.  doi: 10.1385/BTER:104:1:033

    16. [16]

      H. Xiao, F. Li, Z. Zhang, et al., Toxicol. Lett. 155 (2005) 247-252.  doi: 10.1016/j.toxlet.2004.09.021

    17. [17]

      L. Feng, H. Xiao, X. He, et al., Neurotoxicol. Teratol. 28 (2006) 119-124.  doi: 10.1016/j.ntt.2005.10.007

    18. [18]

      L. Feng, H. Xiao, X. He, et al., Toxicol. Lett. 165 (2006) 112-120.  doi: 10.1016/j.toxlet.2006.02.003

    19. [19]

      L. Feng, X. He, H. Xiao, et al., Biolog. Trace Elem. Res. 117 (2007) 89-104.  doi: 10.1007/BF02698086

    20. [20]

      X. He, L. Feng, H. Xiao, et al., Toxicol. Lett. 170 (2007) 94-96.  doi: 10.1016/j.toxlet.2007.02.001

    21. [21]

      L.X. Feng, H.Q. Xiao, X. He, et al., J. Radioanal. Nucl. Chem. 272 (2007) 333-337.  doi: 10.1007/s10967-007-0525-2

    22. [22]

      X. He, Z.Y. Zhang, L.X. Feng, et al., J. Radioanal. Nucl. Chem. 272 (2007) 557-559.  doi: 10.1007/s10967-007-0623-1

    23. [23]

      X. He, Z. Zhang, H. Zhang, Y. Zhao, Z. Chai, Toxicol. Sci. 103 (2008) 354-361.  doi: 10.1093/toxsci/kfn046

    24. [24]

      Y.F. Li, L. Shang, J. Zhao, H. Hu, W. Wang, Environmental Bioinorganic Chemistry of Mercury, Science Press, 2018.

    25. [25]

      M. Guan, C. Guan, Z. Chai, et al., Chin. J. Preventive Med. 27 (1993) 235.

    26. [26]

      C. Chai, W. Feng, Q. Qian, et al., Biolog. Trace Elem. Res. 43 (1994) 423-433.

    27. [27]

      W.Y. Feng, Q.F. Qian, P.Q. Zhang, C.F. Chai, J. Radioanal. Nucl. Chem. 195 (1995) 67-73.  doi: 10.1007/BF02036474

    28. [28]

      W.Y. Feng, C.F. Chai, Q.F. Qian, J. Radioanal. Nucl. Chem. 212 (1996) 61-68.  doi: 10.1007/BF02165452

    29. [29]

      Y.F. Li, C. Chen, L. Xing, et al., Nucl. Techn. 27 (2004) 899-903.

    30. [30]

      Y.F. Li, C. Chen, B. Li, et al., J. Inorg. Biochem. 102 (2008) 500-506.  doi: 10.1016/j.jinorgbio.2007.11.005

    31. [31]

      Y.F. Li, C. Chen, B. Li, et al., Environ. Res. 107 (2008) 39-44.  doi: 10.1016/j.envres.2007.07.003

    32. [32]

      C. Chen, J. Zhao, H. Yu, et al., Mater. Geoenviron. 51 (2004) 373-376.

    33. [33]

      C. Chen, L. Qu, B. Li, Clin. Chem. 51 (2005) 759-767.  doi: 10.1373/clinchem.2004.042093

    34. [34]

      Z. Chai, X. Mao, et al., Anal. Bioanal. Chem. 372 (2002) 407-411.  doi: 10.1007/s00216-001-1218-2

    35. [35]

      J. Zhao, C. Chen, P. Zhang, et al., J. Radioanal. Nucl. Chem. 259 (2004) 459-463.  doi: 10.1023/B:JRNC.0000020918.92350.40

    36. [36]

      J. Zhao, P. Zhang, C. Chen, et al., Chin. J. Biochem. Mol. Biol. 19 (2003) 377-382.

    37. [37]

      C. Chen, L. Qu, J. Zhao, et al., Sci. Total Environ. 366 (2006) 627-637.  doi: 10.1016/j.scitotenv.2005.12.021

    38. [38]

      J. Sun, C. Chen, B. Li, et al., J. Hyg. Res. 35 (2006) 722-725.

    39. [39]

      P. Zhang, C. Chen, J. Zhao, et al., Environ. Sci. 25 (2004) 149-154.

    40. [40]

      L. Li, G. Wu, J. Sun, et al., J. Toxicol. Environ. Health Part A, 71 (2008) 1266-1269.  doi: 10.1080/15287390802216041

    41. [41]

      X. Wang, Y.F. Li, B. Li, et al., Appl. Geochem. 26 (2011) 182-187.  doi: 10.1016/j.apgeochem.2010.11.017

    42. [42]

      J. Zhao, Y. Li, Y. Gao, et al., Asian J. Ecotoxicol. 9 (2014) 881-887.

    43. [43]

      Z. Chai, W. Feng, Q. Qian, G. Ming, Biolog. Trace Elem. Res. 63 (1998) 95-104.  doi: 10.1007/BF02778868

    44. [44]

      W. Feng, Z. Chai, Q. Qian, M. Guan, Nucl. Tech. (1997) 37-43.

    45. [45]

      C. Chen, H. Yu, J. Zhao, et al., Environ. Health Perspect. 114 (2006) 297-301.  doi: 10.1289/ehp.7861

    46. [46]

      J. Zhao, Y.F. Li, N. Zhu, Y. Gao, Z. Chai, Sci. Technol. Rev. 33 (2015) 93-100.

    47. [47]

      Z. Wang, L. Cui, J. Zhao, et al., Sci. Sinica46 (2016) 677-687.

    48. [48]

      Y.F. Li, Z. Dong, C. Chen, et al., Environ. Sci. Technol. 46 (2012) 11313-11318.  doi: 10.1021/es302241v

    49. [49]

      Y.F. Li, L. Hu, B. Li, et al., J. Anal. At. Spectrom. 26 (2011) 224-229.  doi: 10.1039/C0JA00129E

    50. [50]

      Y. Li, J. Zhao, Y. Gao, et al., Asian J. Ecotoxicol. 9 (2014) 972-977.  doi: 10.1111/jfb.12472

    51. [51]

      Y. Li, J. Zhao, B. Zhang, et al., Plant Soil398 (2016) 87-97.  doi: 10.1007/s11104-015-2627-x

    52. [52]

      Y.F. Li, J. Zhao, Y. Li, et al., Plant Soil391 (2015) 195-205.  doi: 10.1007/s11104-015-2418-4

    53. [53]

      J. Zhao, Y. Gao, Y.F. Li, et al., Environ. Res. 125 (2013) 75-81.  doi: 10.1016/j.envres.2013.01.010

    54. [54]

      J. Zhao, Y. Hu, Y. Gao, et al., Metallomics5 (2013) 896-903.  doi: 10.1039/c3mt20273a

    55. [55]

      Y. Gao, X. Peng, J. Zhang, et al., Metallomics5 (2013) 913-919.  doi: 10.1039/c3mt20279h

    56. [56]

      Y. Li, J. Zhao, Y.F. Li, et al., Metallomics8 (2016) 663-671.  doi: 10.1039/C5MT00264H

    57. [57]

      Y. Li, J. Zhao, H. Zhong, et al., Environ. Sci. Technol. 53 (2019) 1844-1852.  doi: 10.1021/acs.est.8b03511

    58. [58]

      X. Lin, J. Zhao, W. Zhang, et al., Ecotoxicol. Environ. Saf. 22 (2020) 1222-1228.

    59. [59]

      X. Lin, J. Zhao, W. Zhang, et al., J. Hazard. Mater. 409 (2021) 124923.  doi: 10.1016/j.jhazmat.2020.124923

    60. [60]

      H. Li, Y. Li, W. Tang, et al., J. Hazard. Mater. 424 (2022) 127394.  doi: 10.1016/j.jhazmat.2021.127394

    61. [61]

      Z. Chai, B. Stemshorn, J. Hao, et al., Special policy study on mercury management in China, Proceedings of the The China Council for International Cooperation on Environment and Development, Beijing, 2011.

    62. [62]

      D. Xu, W. Zhong, L. Deng, Z. Chai, X. Mao, Chemosphere54 (2004) 743-752.  doi: 10.1016/j.chemosphere.2003.08.022

    63. [63]

      D. Xu, W. Zhong, L. Deng, Z. Chai, Z. Zhang, J. Radioanal. Nucl. Chem. 259 (2004) 129-134.  doi: 10.1023/B:JRNC.0000015817.18174.11

    64. [64]

      D. Xu, W. Zhong, L. Deng, Z. Chai, X. Mao, Environ. Sci. Technol. 37 (2003) 1-6.  doi: 10.1021/es025799o

    65. [65]

      D. Xu, L. Deng, Z. Chai, X. Mao, Chemosphere57 (2004) 1343-1353.  doi: 10.1016/j.chemosphere.2004.09.016

    66. [66]

      D. Xu, M. Dan, Y. Song, Z. Chai, G. Zhuang, Atmos. Environ. 39 (2005) 4119-4128.  doi: 10.1016/j.atmosenv.2005.03.030

    67. [67]

      S. Mounicou, J. Szpunar, R. Lobinski, Chem. Soc. Rev. 38 (2009) 1119-1138.  doi: 10.1039/b713633c

    68. [68]

      H. Haraguchi, J. Anal. At. Spectrom. 19 (2004) 5-14.  doi: 10.1039/b308213j

    69. [69]

      R. Lobinski, J.S. Becker, H. Haraguchi, B. Sarkar, Pure Appl. Chem., 82 (2010) 493-504.  doi: 10.1351/pac-rep-09-03-04

    70. [70]

      C. Chen, Z. Chai, Y. Gao, Nuclear Analytical Techniques for Metallomics and Metalloproteomics, RSC Publishing, Cambridge, 2010.

    71. [71]

      Y.F. Li, H. Sun, C. Chen, Z. Chai, Metallomics, Science Press, Beijing, 2016.

    72. [72]

      Y. Gao, C. Chen, Z. Chai, et al., Analyst127 (2002) 1700-1704.  doi: 10.1039/b208976a

    73. [73]

      Y. Gao, C. Chen, P. Zhang, Toxicol. Lett. 152 (2004) 223-234.  doi: 10.1016/j.toxlet.2004.05.001

    74. [74]

      P. Zhang, C. Chen, M. Horvat, et al., Anal. Bioanal. Chem. 380 (2004) 773-781.  doi: 10.1007/s00216-004-2834-4

    75. [75]

      C. Chen, P. Zhang, Z. Chai, Chin. Sci. Bull. 50 (2005) 113-116.  doi: 10.1007/BF02897512

    76. [76]

      C. Chen, J. Zhao, Y. Gao, Z. Chai, Chem. Anal. (Warsaw), 50 (2005) 169-178.

    77. [77]

      Y. Gao, Y. Liu, C. Chen, et al., J. Anal. At. Spectrom. 20 (2005) 473-475.  doi: 10.1039/b413309a

    78. [78]

      G. Yuxi, L. Yingbin, C. Chunying, et al., J. Anal. At. Spectrom. 20 (2005) 473-475.  doi: 10.1016/j.nano.2011.08.019

    79. [79]

      Y. Gao, C. Chen, Z. Chai, J. Anal. At. Spectrom. 22 (2007) 856-866.  doi: 10.1039/b703323k

    80. [80]

      Y.F. Li, C. Chen, B. Li, et al., J. Anal. At. Spectrom. 22 (2007) 925-930.  doi: 10.1039/b703310a

    81. [81]

      Y. Gao, N. Liu, C. Chen, et al., J. Anal. At. Spectrom. 23 (2008) 1121-1124.  doi: 10.1039/b802338g

    82. [82]

      Y.F. Li, C. Chen, Y. Qu, et al., Pure Appl. Chem. 80 (2008) 2577-2594.  doi: 10.1351/pac200880122577

    83. [83]

      Y.F. Li, Y. Gao, C. Chen, et al., Sci. China Ser. B Chem. 39 (2009) 1-10.

    84. [84]

      Y. Zhou, S. Yuan, K.K.W. To, et al., Chem. Sci. (2022), doi:10.1039/D1031SC05852E.  doi: 10.1039/D1031SC05852E

    85. [85]

      H. Sun, Z.F. Chai, Ann. Rep. A 106 (2010) 20–38.  doi: 10.1039/b920672h

    86. [86]

      J. Wang, C. Chen, H. Yu, et al., J. Radioanal. Nucl. Chem. 272 (2007) 527-531.  doi: 10.1007/s10967-007-0617-z

    87. [87]

      J. Wang, G. Zhou, C. Chen, et al., Toxicol. Lett. 168 (2007) 176-185.  doi: 10.1016/j.toxlet.2006.12.001

    88. [88]

      C. Chen, Y. -F. Li, Y. Qu, Z. Chai, Y. Zhao, Chem. Soc. Rev. 42 (2013) 8266-8303.  doi: 10.1039/c3cs60111k

    89. [89]

      C. Ge, F. Lao, W. Li, et al., Anal. Chem. 80 (2008) 9426-9434.  doi: 10.1021/ac801469b

    90. [90]

      Y.F. Li, Y. Gao, Z. Chai, C. Chen, Metallomics6 (2014) 220-232.  doi: 10.1039/c3mt00316g

    91. [91]

      L. Wang, J. Zhao, L. Cui, et al., Metallomics13 (2021) mfab013.  doi: 10.1093/mtomcs/mfab013

    92. [92]

      Y.F. Li, H. Sun, At. Spectrosc. 42 (2021) 227-230.

    93. [93]

      H. Wang, M. Wang, B. Wang, et al., Metallomics4 (2012) 289-296.  doi: 10.1039/c2mt00104g

    94. [94]

      H.J. Wang, M. Wang, B. Wang, et al., J. Anal. At. Spectrom. 25 (2010) 328-333.  doi: 10.1039/B921201A

    95. [95]

      H. Wang, M. Wang, B. Wang, et al., Metallomics4 (2012) 1113-1118.  doi: 10.1039/c2mt20056b

    96. [96]

      M. Wang, W.Y. Feng, Y.L. Zhao, Z.F. Chai, Mass Spectrom. Rev. 29 (2010) 326-348.  doi: 10.1002/mas.20241

    97. [97]

      L.N. Zheng, L.X. Feng, J.W. Shi, et al., Anal. Chem. 92 (2020) 14339-14345.  doi: 10.1021/acs.analchem.0c01775

    98. [98]

      M. Wang, L.N. Zheng, B. Wang, et al., Anal. Chem. 86 (2014) 10252-10256.  doi: 10.1021/ac502438n

    99. [99]

      M. Wang, W. Feng, W. Lu, et al., Anal. Chem. 79 (2007) 9128-9134.  doi: 10.1021/ac071483t

    100. [100]

      Y. Wang, W. Liu, Z. Bai, et al., Angew. Chem. Int. Ed. 57 (2018) 5783-5787.  doi: 10.1002/anie.201802173

    101. [101]

      Y. Wang, Z. Liu, Y. Li, et al., J. Am. Chem. Soc. 137 (2015) 6144-6147.  doi: 10.1021/jacs.5b02480

    102. [102]

      Y. Li, Z. Yang, Y. Wang, et al., Nat. Commun. 8 (2017) 1354.  doi: 10.1038/s41467-017-01208-w

    103. [103]

      Y. Wang, S.X. Hu, L. Cheng, et al., CCS Chem. 2 (2020) 425-431.  doi: 10.31635/ccschem.020.202000152

    104. [104]

      L. Mei, W.Q. Shi, Z.F. Chai, et al., Bull. Chem. Soc. Jpn. 91 (2018) 554-562.  doi: 10.1246/bcsj.20170418

    105. [105]

      L. Mei, P. Ren, Q.Y. Wu, et al., J. Am. Chem. Soc. 142 (2020) 16538-16545.  doi: 10.1021/jacs.0c08048

    106. [106]

      L. Mei, Q.Y. Wu, C.M. Liu, et al., Chem. Commun. 50 (2014) 3612-3615.  doi: 10.1039/C4CC00690A

    107. [107]

      L. Mei, C. Xu, Q.Y. Wu, et al., Chem. Commun. 54 (2018) 8645-8648.  doi: 10.1039/C8CC05122D

    108. [108]

      L. Mei, F.Z. Li, J.H. Lan, Nat. Commun. 10 (2019) 1532.  doi: 10.1038/s41467-019-09504-3

    109. [109]

      T. Zheng, Z. Yang, D. Gui, et al., Nat. Commun. 8 (2017) 15369.  doi: 10.1038/ncomms15369

    110. [110]

      D. Sheng, L. Zhu, X. Dai, et al., Angew. Chem. Int. Ed. 58 (2019) 4968-4972.  doi: 10.1002/anie.201814640

    111. [111]

      L. Zhu, C. Xiao, X. Dai, et al. Environ. Sci. Technol. Lett. 4 (2017) 316-322.  doi: 10.1021/acs.estlett.7b00165

    112. [112]

      D. Sheng, L. Zhu, C. Xu, et al., Environ. Sci. Technol. 51 (2017) 3471-3479.  doi: 10.1021/acs.est.7b00339

    113. [113]

      L. He, S. Liu, L. Chen, et al., Chem. Sci. 10 (2019) 4293-4305.  doi: 10.1039/c9sc00172g

    114. [114]

      J. Li, X. Dai, L. Zhu, et al., Nat. Commun. 9 (2018) 3007.  doi: 10.1038/s41467-018-05380-5

    115. [115]

      J. Li, L. Chen, N. Shen, et al., Sci. China Chem. 64 (2021) 1251-1260.  doi: 10.1007/s11426-020-9962-9

    116. [116]

      N. Shen, Z. Yang, S. Liu, et al., Nat. Commun. 11 (2020) 5571.  doi: 10.1038/s41467-020-19374-9

    117. [117]

      J. Li, B. Li, N. Shen, et al., ACS Cent. Sci. 7 (2021) 1441-1450.  doi: 10.1021/acscentsci.1c00847

    118. [118]

      L. Zhu, D. Sheng, C. Xu, et al., J. Am. Chem. Soc. 139 (2017) 14873-14876.  doi: 10.1021/jacs.7b08632

    119. [119]

      H. Zhang, W. Liu, A. Li, et al., Angew. Chem. Int. Ed. 58 (2019) 16110-16114.  doi: 10.1002/anie.201909718

    120. [120]

      H. Li, F. Zhai, D. Gui, et al., Appl. Catal. B Environ. 254 (2019) 47-54.  doi: 10.1016/j.apcatb.2019.04.087

    121. [121]

      J. Zhang, L. Chen, X. Dai, et al., Chem5 (2019) 977-994.  doi: 10.1016/j.chempr.2019.02.011

    122. [122]

      L. He, L. Chen, X. Dong, et al., Chem7 (2021) 699-714.  doi: 10.1016/j.chempr.2020.11.024

    123. [123]

      C.L. Xiao, C.Z. Wang, L.Y. Yuan, et al., Inorg. Chem. 53 (2014) 1712-1720.  doi: 10.1021/ic402784c

    124. [124]

      X. Zhang, Q. Wu, J. Lan, et al., Sep. Purif. Technol. 223 (2019) 274-281.  doi: 10.1016/j.seppur.2019.04.072

    125. [125]

      X. Zhang, X. Kong, L. Yuan, Z. Chai, W. Shi, Inorg. Chem. 58 (2019) 10239-10247.  doi: 10.1021/acs.inorgchem.9b01400

    126. [126]

      X. Zhang, L. Yuan, Z. Chai, W. Shi, Sci. China Chem. 61 (2018) 1285-1292.  doi: 10.1007/s11426-018-9227-1

    127. [127]

      C.L. Xiao, Q.Y. Wu, C.Z. Wang, et al., Inorg. Chem. 53 (2014) 10846-10853.  doi: 10.1021/ic500816z

    128. [128]

      W.Q. Shi, L.Y. Yuan, C.Z. Wang, et al. Adv. Mater. 26 (2014) 7807-7848.  doi: 10.1002/adma.201304323

    129. [129]

      Y. Liu, K. Liu, L. Luo, et al., Electrochim. Acta275 (2018) 100-109.  doi: 10.3390/medsci6040100

    130. [130]

      Y.L. Liu, G.A. Ye, L.Y. Yuan, et al., Electrochim. Acta158 (2015) 277-286.  doi: 10.1504/IJIL.2015.071497

    131. [131]

      Y.K. Zhong, Y.L. Liu, K. Liu, et al., Nat. Commun. 12 (2021) 5777.  doi: 10.1038/s41467-021-26119-9

    132. [132]

      Y. Wang, X. Yin, W. Liu, et al., Angew. Chem. Int. Ed. 57 (2018) 7883-7887.  doi: 10.1002/anie.201802865

    133. [133]

      J. Xie, Y. Wang, W. Liu, et al., Angew. Chem. Int. Ed. 56 (2017) 7500-7504.  doi: 10.1002/anie.201700919

    134. [134]

      W. Liu, E. Song, L. Cheng, et al., Chem. Mate. 31 (2019) 9684-9690.  doi: 10.1021/acs.chemmater.9b03130

    135. [135]

      Y. Wang, X. Liu, X. Li, et al., J. Am. Chem. Soc. 141 (2019) 8030-8034.  doi: 10.1021/jacs.9b01270

    136. [136]

      L. Cheng, C. Liang, W. Liu, et al., J. Am. Chem. Soc. 142 (2020) 16218-16222.  doi: 10.1021/jacs.0c08117

    137. [137]

      M. Zhang, C. Liang, G.D. Cheng, et al., Angew. Chem. Int. Ed. 60 (2021) 9886-9890.  doi: 10.1002/anie.202017298

    138. [138]

      C. Liang, L. Cheng, S. Zhang, et al., J. Am. Chem. Soc. 144 (2022) 2189-2196.  doi: 10.1021/jacs.1c11150

    139. [139]

      C. Liang, S. Zhang, L. Cheng, et al., Angew. Chem. Int. Ed. 59 (2020) 11856-11860.  doi: 10.1002/anie.202004006

    140. [140]

      X. Wang, X. Dai, C. Shi, et al., Nat. Commun. 10 (2019) 2570.  doi: 10.1109/cac48633.2019.8996820

    141. [141]

      X. Wang, C. Shi, M. Gao, et al., Radiat. Med. Prot. 1 (2020) 159-165.  doi: 10.1016/j.radmp.2020.11.006

    142. [142]

      C. Shi, X. Wang, J. Wan, et al., Bioconjugate Chem. 29 (2018) 3896-3905.  doi: 10.1021/acs.bioconjchem.8b00711

    143. [143]

      L. Chen, R. Bai, X. Wang, et al., ACS Appl. Bio Mater. 3 (2020) 8731-8738.  doi: 10.1021/acsabm.0c01122

  • 加载中

Metrics
  • PDF Downloads(11)
  • Abstract views(833)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return