Aggregation of graphene oxide and its environmental implications in the aquatic environment
-
* Corresponding authors.
E-mail addresses: liyang_bnu@bnu.edu.cn (Y. Li), xiaxh@bnu.edu.cn (X. Xia).
Citation:
Jawad Ali, Yang Li, Enxiang Shang, Xinjie Wang, Jian Zhao, Muhammad Mohiuddin, Xinghui Xia. Aggregation of graphene oxide and its environmental implications in the aquatic environment[J]. Chinese Chemical Letters,
;2023, 34(2): 107327.
doi:
10.1016/j.cclet.2022.03.050
T. Malina, E. Maršálková, K. Holá, R. Zbořil, B. Maršálek, J. Hazard. Mater. 399 (2020) 123027.
doi: 10.1016/j.jhazmat.2020.123027
F. Mouhat, F.X. Coudert, M.L. Bocquet, Nat. Commun. 11 (2020) 1566.
doi: 10.1038/s41467-020-15381-y
S.H. Dave, C. Gong, A.W. Robertson, J.H. Warner, J.C. Grossman, ACS Nano 10 (2016) 7515–7522.
doi: 10.1021/acsnano.6b02391
L.C. Chen, S. Lei, M.Z. Wang, J. Yang, X.W. Ge, Chin. Chem. Lett. 27 (2016) 511–517.
doi: 10.1016/j.cclet.2016.01.057
G. Reina, J.M. González-Domínguez, A. Criado, et al., Chem. Soc. Rev. 46 (2017) 4400–4416.
doi: 10.1039/C7CS00363C
Y. Zhao, Y. Liu, X. Zhang, W. Liao, Chemosphere 262 (2021) 127885.
doi: 10.1016/j.chemosphere.2020.127885
G. Eda, M. Chhowalla, Adv. Mater. 22 (2010) 2392–2415.
doi: 10.1002/adma.200903689
A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Nano Mater. Sci. 1 (2019) 31–47.
doi: 10.1016/j.nanoms.2019.02.004
L. Saghatforoush, M. Hasanzadeh, N. Shadjou, Chin. Chem. Lett. 25 (2014) 655–658.
doi: 10.1016/j.cclet.2014.01.014
X. Hu, S. You, F. Li, Y. Liu, Front. Environ. Sci. Eng. 16 (2022) 48.
doi: 10.1007/s11783-021-1482-7
Y. Gao, X. Zeng, W. Zhang, et al., Sci. Total Environ. 806 (2022) 150942.
doi: 10.1016/j.scitotenv.2021.150942
Y. Zhu, H. Ji, H.M. Cheng, R.S. Ruoff, Natl. Sci. Rev. 5 (2018) 90–101.
doi: 10.1093/nsr/nwx055
Y. Yang, Z. Yu, T. Nosaka, et al., Front. Environ. Sci. Eng. 9 (2015) 823–831.
doi: 10.1007/s11783-015-0787-9
K. Ko, M.J. Kim, J.Y. Lee, W. Kim, H.J. Chung, Sci. Total Environ. 651 (2019) 1087–1095.
doi: 10.1016/j.scitotenv.2018.09.124
P. Kumar, P. Huo, R. Zhang, B. Liu, Nanomaterials 9 (2019) 737.
doi: 10.3390/nano9050737
S. Azizighannad, S. Mitra, Sci. Rep. 8 (2018) 10083.
doi: 10.1038/s41598-018-28353-6
J. Zhao, Z. Wang, J.C. White, B. Xing, Environ. Sci. Technol. 48 (2014) 9995–10009.
doi: 10.1021/es5022679
B. Sun, Y. Zhang, R. Li, et al., Water Res. 200 (2021) 117213.
doi: 10.1016/j.watres.2021.117213
Y. Gao, X. Zeng, W. Zhang, et al., Sci. Total Environ. 806 (2022) 150942.
doi: 10.1016/j.scitotenv.2021.150942
J.L. Suter, R.C. Sinclair, P.V. Coveney, Adv. Mater. 32 (2020) 2003213.
Q. Abbas, B. Yousaf, Amina, et al., Environ. Int. 138 (2020) 105646.
doi: 10.1016/j.envint.2020.105646
O. Akhavan, E. Ghaderi, ACS Nano 4 (2010) 5731–5736.
doi: 10.1021/nn101390x
M.C. Duch, G.S. Budinger, Y.T. Liang, et al., Nano Lett. 11 (2011) 5201–5207.
doi: 10.1021/nl202515a
X. Hu, Q. Zhou, Chem. Rev. 113 (2013) 3815–3835.
doi: 10.1021/cr300045n
S. Ouyang, X. Hu, Q. Zhou, ACS Appl. Mater. Interfaces 7 (2015) 18104–18112.
doi: 10.1021/acsami.5b05328
N. Malhotra, O.B. Villaflores, G. Audira, et al., Molecules 25 (2020) 3618.
doi: 10.3390/molecules25163618
S. Yu, X. Wang, R. Zhang, et al., Sci. Rep. 7 (2017) 39625.
doi: 10.1038/srep39625
M. Bayati, M. Fidalgo de Cortalezzi, J. Environ. Eng. 145 (2019) 04019050.
doi: 10.1061/(ASCE)EE.1943-7870.0001561
M. Shams, L.M. Guiney, L. Huang, et al., Environ. Sci. Nano 6 (2019) 2203–2214.
doi: 10.1039/C9EN00355J
J.D. Lanphere, B. Rogers, C. Luth, C.H. Bolster, S.L. Walker, Environ. Eng. Sci. 31 (2014) 350–359.
doi: 10.1089/ees.2013.0392
M. Shen, X. Hai, Y. Shang, et al., Sci. Total Environ. 656 (2019) 843–851.
doi: 10.1016/j.scitotenv.2018.11.387
J. Ali, Y. Li, X. Wang, et al., Sci. Total Environ. 721 (2020) 137682.
doi: 10.1016/j.scitotenv.2020.137682
X. Huangfu, Y. Xu, C. Liu, et al., Chemosphere 219 (2019) 766–783.
doi: 10.1016/j.chemosphere.2018.12.044
M. Wang, B. Gao, D. Tang, et al., Colloid Surf. A Physicochem. Eng. Asp. 538 (2018) 63–72.
doi: 10.1016/j.colsurfa.2017.10.061
W.C. Hou, I. Chowdhury, D.G. Goodwin, et al., Environ. Sci. Technol. 49 (2015) 3435–3443.
doi: 10.1021/es5047155
A. Ramos-Corona, R. Rangel, J. Espino, et al., Catal. Today 392-393 (2022) 81–92.
R. Ma, Y. Zhou, H. Bi, et al., Prog. Mater. Sci. 113 (2020) 100665.
doi: 10.1016/j.pmatsci.2020.100665
Z. Teng, B. Wang, Y. Hu, D. Xu, Chin. Chem. Lett. 30 (2019) 717–720.
doi: 10.1016/j.cclet.2018.08.017
P. Sun, K. Wang, H. Zhu, Adv. Mater. 28 (2016) 2287–2310.
doi: 10.1002/adma.201502595
K.Y. Yoon, S.J. An, Y. Chen, et al., J. Colloid Interface Sci. 403 (2013) 1–6.
doi: 10.1016/j.jcis.2013.03.012
B.W. Pratama, W.S.B. Dwandaru, Nano Express 1 (2020) 010023.
doi: 10.1088/2632-959X/ab8685
F.T. Johra, W.G. Jung, Appl. Surf. Sci. 357 (2015) 1911–1914.
doi: 10.1016/j.apsusc.2015.09.128
L. Silipigni, G. Salvato, B. Fazio, et al., J. Mater. Sci. Mater. Electron. 31 (2020) 11847–11854.
doi: 10.1007/s10854-020-03738-4
K.A. Mkhoyan, A.W. Contryman, J. Silcox, et al., Nano Lett. 9 (2009) 1058–1063.
doi: 10.1021/nl8034256
K. Erickson, R. Erni, Z. Lee, et al., Adv. Mater. 22 (2010) 4467–4472.
doi: 10.1002/adma.201000732
K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2 (2010) 1015–1024.
doi: 10.1038/nchem.907
S. Ghazizadeh, P. Duffour, N.T. Skipper, M. Billing, Y. Bai, Cem. Concr. Res. 99 (2017) 116–128.
doi: 10.1016/j.cemconres.2017.05.011
F. Rubbi, L. Das, K. Habib, et al., J. Mol. Liq. 338 (2021) 116771.
doi: 10.1016/j.molliq.2021.116771
J. Li, Y. Cheng, X. Chen, S. Zheng, Int. J. Pharm. X 1 (2019) 100002.
M.M. Gudarzi, Langmuir 32 (2016) 5058–5068.
doi: 10.1021/acs.langmuir.6b01012
G. Trefalt, S.H. Behrens, M. Borkovec, Langmuir 32 (2016) 380–400.
doi: 10.1021/acs.langmuir.5b03611
Q. Pan, E. Shim, B. Pourdeyhimi, W. Gao, Langmuir 33 (2017) 7452–7458.
doi: 10.1021/acs.langmuir.7b01508
K. He, G. Chen, G. Zeng, et al., Nanoscale 9 (2017) 5370–5388.
doi: 10.1039/C6NR09931A
J. Luo, L.J. Cote, V.C. Tung, et al., J. Am. Chem. Soc. 132 (2010) 17667–17669.
doi: 10.1021/ja1078943
B.J. Hong, O.C. Compton, Z. An, I. Eryazici, S.T. Nguyen, ACS Nano 6 (2012) 63–73.
doi: 10.1021/nn202355p
Y. Feng, X. Liu, K.A. Huynh, et al., Environ. Sci. Technol. 51 (2017) 6821–6828.
doi: 10.1021/acs.est.7b00132
X. Hu, Y. Yu, W. Hou, J. Zhou, L. Song, Appl. Surf. Sci. 273 (2013) 118–121.
doi: 10.1016/j.apsusc.2013.01.201
Z. Zeng, Y. Wang, Q. Zhou, K. Yang, D. Lin, Environ. Pollut. 250 (2019) 366–374.
doi: 10.1016/j.envpol.2019.03.112
D. Shevlin, N. O'Brien, E. Cummins, Sci. Total Environ. 621 (2018) 1033–1046.
doi: 10.1016/j.scitotenv.2017.10.123
T.Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack, Environ. Pollut. 185 (2014) 69–76.
doi: 10.1016/j.envpol.2013.10.004
B. Zhu, X. Xia, S. Zhang, Y. Tang, Environ. Pollut. 234 (2018) 581–589.
doi: 10.1016/j.envpol.2017.11.086
S. Wagner, A. Gondikas, E. Neubauer, T. Hofmann, F. von der Kammer, Angew. Chem. Int. Ed. 53 (2014) 12398–12419.
B.M. Smith, D.J. Pike, M.O. Kelly, J.A. Nason, Environ. Sci. Technol. 49 (2015) 12789–12797.
doi: 10.1021/acs.est.5b03486
L. Jiang, Y. Liu, G. Zeng, et al., Chem. Eng. J. 343 (2018) 371–378.
doi: 10.1016/j.cej.2018.03.026
N.P. Sotirelis, C.V. Chrysikopoulos, Environ. Sci. Technol. 49 (2015) 13413–13421.
doi: 10.1021/acs.est.5b03496
J. Wang, S. Yu, Y. Zhao, et al., Sep. Purif. Technol. 184 (2017) 88–96.
doi: 10.1016/j.seppur.2017.03.058
J. Zhao, F. Liu, Z. Wang, X. Cao, B. Xing, Environ. Sci. Technol. 49 (2015) 2849–2857.
doi: 10.1021/es505605w
X. Ren, J. Li, X. Tan, et al., Environ. Sci. Technol. 48 (2014) 5493–5500.
doi: 10.1021/es404996b
N.P. Sotirelis, C.V. Chrysikopoulos, Sci. Total Environ. 579 (2017) 736–744.
doi: 10.1016/j.scitotenv.2016.11.034
J. Amaro-Gahete, A. Benítez, R. Otero, et al., Nanomaterials 9 (2019) 152.
doi: 10.3390/nano9020152
G. Ding, N. Zhang, C. Wang, et al., J. Nanopart. Res. 20 (2018) 313.
doi: 10.1007/s11051-018-4421-1
T. Szabo, P. Maroni, I. Szilagyi, Carbon 160 (2020) 145–155.
doi: 10.1016/j.carbon.2020.01.022
L. Wu, L. Liu, B. Gao, et al., Langmuir 29 (2013) 15174–15181.
doi: 10.1021/la404134x
Y. He, Y. Liu, F. Guo, et al., Chin. Chem. Lett. 31 (2020) 1625–1629.
doi: 10.1016/j.cclet.2019.10.010
B. Sun, Y. Zhang, Q. Liu, et al., Environ. Sci. Nano 7 (2020) 634–644.
doi: 10.1039/C9EN01040H
A. Bagri, C. Mattevi, M. Acik, et al., Nat. Chem. 2 (2010) 581–587.
doi: 10.1038/nchem.686
J. Luo, H.D. Jang, T. Sun, et al., ACS Nano 5 (2011) 8943–8949.
doi: 10.1021/nn203115u
Y. Jiang, Q. Zeng, P. Biswas, J.D. Fortner, J. Membr. Sci. 581 (2019) 453–461.
doi: 10.1016/j.memsci.2019.03.056
C. Liao, X.R. Zhao, X.Y. Jiang, J. Teng, J.G. Yu, Microchem. J. 152 (2020) 104288.
doi: 10.1016/j.microc.2019.104288
X. Ren, J. Li, C. Chen, et al., Environ. Sci. Nano 5 (2018) 1298–1340.
doi: 10.1039/C7EN01258F
Y. Tang, H. Liu, X. Wang, et al., J. Mol. Struct. 1224 (2021) 129196.
doi: 10.1016/j.molstruc.2020.129196
Y. Si, E.T. Samulski, Nano Lett. 8 (2008) 1679–1682.
doi: 10.1021/nl080604h
H. Wang, Y.H. Hu, J. Colloid Interface Sci. 391 (2013) 21–27.
doi: 10.1016/j.jcis.2012.09.056
M. Wang, Y. Niu, J. Zhou, et al., Nanoscale 8 (2016) 14587–14592.
doi: 10.1039/C6NR03503E
M. Li, M. Kobayashi, Colloid Surf, A Physicochem. Eng. Asp. 626 (2021) 127021.
doi: 10.1016/j.colsurfa.2021.127021
J. Zhao, Y. Li, X. Wang, et al., Environ. Pollut. 279 (2021) 116926.
doi: 10.1016/j.envpol.2021.116926
K.L. Chen, M. Elimelech, J. Colloid Interface Sci. 309 (2007) 126–134.
doi: 10.1016/j.jcis.2007.01.074
I. Chowdhury, M.C. Duch, N.D. Mansukhani, M.C. Hersam, D. Bouchard, Environ. Sci. Technol. 47 (2013) 6288–6296.
doi: 10.1021/es400483k
A. Griffith, S.M. Notley, J. Colloid Interface Sci. 369 (2012) 210–215.
doi: 10.1016/j.jcis.2011.11.081
T. Szabó, E. Tombácz, E. Illés, I. Dékány, Carbon 44 (2006) 537–545.
doi: 10.1016/j.carbon.2005.08.005
C.J. Shih, S. Lin, R. Sharma, M.S. Strano, D. Blankschtein, Langmuir 28 (2012) 235–241.
doi: 10.1021/la203607w
X. Li, X. Tang, Y. Fang, J. Mol. Liq. 199 (2014) 237–243.
doi: 10.1016/j.molliq.2014.09.020
V. Sabna, S.G. Thampi, S. Chandrakaran, Water Sci. Technol. 78 (2018) 732–742.
doi: 10.2166/wst.2018.311
H. Tang, S. Zhang, T. Huang, F. Cui, B. Xing, Environ. Sci. Nano 7 (2020) 984–995.
doi: 10.1039/C9EN01365B
W. Wu, Y. Hu, Q. Guo, et al., J. Hazard. Mater. 297 (2015) 59–65.
doi: 10.1016/j.jhazmat.2015.04.078
T.P.D. Shareena, D. McShan, A.K. Dasmahapatra, P.B. Tchounwou, Nano Micro Lett. 10 (2018) 53.
doi: 10.1007/s40820-018-0206-4
I. Chowdhury, W.C. Hou, D. Goodwin, et al., Water Res. 78 (2015) 37–46.
doi: 10.1016/j.watres.2015.04.001
H. Bai, W. Jiang, G.P. Kotchey, et al., J. Phys. Chem. C 118 (2014) 10519–10529.
doi: 10.1021/jp503413s
G. Gündüz, Chemistry, Materials, and Properties of Surface Coatings: Traditional and Evolving Technologies, DEStech Publications, Inc, 2015.
R.C. Neuman, Organic Chemistry, in Organic Molecules and Chemical Bonding, California (US): University of California, 1999, pp. 1–55.
M. Mohandoss, S.S. Gupta, A. Nelleri, T. Pradeep, S.M. Maliyekkal, RSC Adv. 7 (2017) 957–963.
doi: 10.1039/C6RA24696F
M.P. Fasnacht, N.V. Blough, Environ. Sci. Technol. 36 (2002) 4364–4369.
doi: 10.1021/es025603k
T. Mill, W. Mabey, B. Lan, A. Baraze, Chemosphere 10 (1981) 1281–1290.
doi: 10.1016/0045-6535(81)90045-X
N.S. Andryushina, O.L. Stroyuk, I.B. Yanchuk, A.V. Yefanov, Colloid Polym. Sci. 292 (2014) 539–546.
doi: 10.1007/s00396-013-3134-3
Y. Gao, X. Ren, G. Song, et al., J. Hazard. Mater. 382 (2020) 121097.
doi: 10.1016/j.jhazmat.2019.121097
W.R. Gallegos-Pérez, A.C. Reynosa-Martínez, C. Soto-Ortiz, et al., Chemosphere 249 (2020) 126160.
doi: 10.1016/j.chemosphere.2020.126160
T. Du, A.S. Adeleye, T. Zhang, et al., Environ. Sci. Nano 5 (2018) 2590–2603.
doi: 10.1039/C8EN00593A
K. Spilarewicz-Stanek, A. Jakimińska, A. Kisielewska, M. Dudek, I. Piwoński, Mater. Sci. Semicond. Process 123 (2021) 105525.
doi: 10.1016/j.mssp.2020.105525
Z. Qi, T. Du, P. Ma, F. Liu, W. Chen, Sci. Total Environ. 657 (2019) 1450–1459.
doi: 10.1016/j.scitotenv.2018.12.143
S. Bele, V. Samanidou, E. Deliyanni, Chem. Eng. Res. Des. 109 (2016) 573–585.
doi: 10.1016/j.cherd.2016.03.002
N. Cai, D. Peak, P. Larese-Casanova, Chem. Eng. J. 273 (2015) 568–579.
doi: 10.1016/j.cej.2015.03.108
I. Chowdhury, M.C. Duch, N.D. Mansukhani, M.C. Hersam, D. Bouchard, Environ. Sci. Technol. 48 (2014) 9382–9390.
doi: 10.1021/es5020828
W. Chen, J. Song, S. Jiang, et al., Front. Environ. Sci. Eng. 16 (2022) 16.
M.A. Islam, D.W. Morton, B.B. Johnson, M.J. Angove, Sep. Purif. Technol. 247 (2020) 116949.
doi: 10.1016/j.seppur.2020.116949
Y. Luo, Y. Zhang, M. Lang, et al., Front. Environ. Sci. Eng. 15 (2021) 96.
doi: 10.1007/s11783-020-1340-z
M. Pham, E.A. Mintz, T.H. Nguyen, J. Colloid Interface Sci. 338 (2009) 1–9.
doi: 10.1016/j.jcis.2009.06.025
Y. Li, J. Niu, E. Shang, J.C. Crittenden, Environ. Sci. Technol. 49 (2015) 965–973.
doi: 10.1021/es505089e
E. Shang, Y. Li, J. Niu, et al., Water Res. 124 (2017) 595–604.
doi: 10.1016/j.watres.2017.08.001
Y. Sun, B. Gao, S.A. Bradford, et al., Water Res. 68 (2015) 24–33.
doi: 10.1016/j.watres.2014.09.025
S. Gurunathan, J. Han, J.H. Park, J.H. Kim, Int. J. Nanomed. 9 (2014) 1783–1797.
J.T.K. Quik, I. Velzeboer, M. Wouterse, A.A. Koelmans, D. van de Meent, Water Res. 48 (2014) 269–279.
doi: 10.1016/j.watres.2013.09.036
A. Beryani, M.R. Alavi Moghaddam, T. Tosco, et al., Sci. Total Environ. 698 (2020) 134224.
doi: 10.1016/j.scitotenv.2019.134224
F. Zou, H. Zhou, D.Y. Jeong, et al., ACS Appl. Mater. Interfaces 9 (2017) 1343–1351.
doi: 10.1021/acsami.6b15085
S. Liu, T.H. Zeng, M. Hofmann, et al., ACS Nano 5 (2011) 6971–6980.
doi: 10.1021/nn202451x
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Xin Lu , Haoran Sun , Xiaomeng Li , Chunrui Li , Jinfeng Wang , Dandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936
Siyu Cao , Yufei Shu , Li Wang , Qi Han , Meng Zhang , Mengxia Wang , How Yong Ng , Zhongying Wang . Controlling nanomaterial distribution and aggregation in thin-film nanocomposite membranes: Role of substrate pore's relative size with nanomaterials. Chinese Chemical Letters, 2025, 36(10): 110793-. doi: 10.1016/j.cclet.2024.110793
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Yuanyi Zhou , Lili Wang , Li Chen , Qingbing Zha , Yu Meng , Mingshan Zhu . Functional inorganic nanomaterials for renal cell carcinoma treatment: Advancements and trends. Chinese Chemical Letters, 2025, 36(12): 110994-. doi: 10.1016/j.cclet.2025.110994
Wenwei Cai , Feng Pan , Shunning Li . Confined proton transport in water-containing layered manganese oxide electrodes. Chinese Journal of Structural Chemistry, 2025, 44(5): 100528-100528. doi: 10.1016/j.cjsc.2025.100528
Yizhi Ge , Jiahui Zou , Hui Liu , Wei He , Huanfeng Zhu . Cisplatin-polyphenol complex liposomes reduce chemotherapy toxicity. Chinese Chemical Letters, 2026, 37(1): 111450-. doi: 10.1016/j.cclet.2025.111450
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Jianju Li , Xinwei Chen , Yang Yu , Hao Ma , Xinhui Xia , Zixuan Zhao , Junqiu Jiang , Qingliang Zhao , Yingzi Lin , Liangliang Wei . Insights into bioavailable heavy metal impact driven by sludge application on soil nitrification: Toxicity thresholds and influential factors. Chinese Chemical Letters, 2025, 36(7): 110410-. doi: 10.1016/j.cclet.2024.110410
Jingyi Yang , Sihan Wang , Xubiao Luo , Zhenyang Yu , Yanbo Zhou . Fenton-like process in antibiotic-containing wastewater treatment: Applications and toxicity evaluation. Chinese Chemical Letters, 2025, 36(12): 110996-. doi: 10.1016/j.cclet.2025.110996
Xuanbo Zhang , Feng Fang , Na Li , Huicong Zhang , Kaiyuan Wang , Zhiqiang Yu , Jin Sun . From reversible to irreversible: Albumin-hitchhiking gemcitabine prodrugs for enhanced antitumor efficacy and reduced toxicity. Chinese Chemical Letters, 2026, 37(2): 111452-. doi: 10.1016/j.cclet.2025.111452
Fengjun Deng , Tingyu Zhao , Xiaochen Zhang , Kaiyong Feng , Ze Liu , Youlin Xiang , Yingjian Yu . Reduced graphene oxide assembled on the Si nanowire anode enabling low passivation and hydrogen evolution for long-life aqueous Si-air batteries. Chinese Chemical Letters, 2025, 36(6): 109897-. doi: 10.1016/j.cclet.2024.109897
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Shuo Li , Qianfa Liu , Lijun Mao , Xin Zhang , Chunju Li , Da Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791
Yuqing Ding , Zhiying Yi , Zhihui Wang , Hongyu Chen , Yan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918
Tong-Tong Zhou , Guan-Yu Ding , Xue Li , Li-Li Wen , Xiao-Xu Pang , Ying-Chen Duan , Ju-Yang He , Guo-Gang Shan , Zhong-Min Su . Design of near-infrared aggregation-induced emission photosensitizers by π-bridge engineering for boosting theranostic efficacy. Chinese Chemical Letters, 2025, 36(6): 110341-. doi: 10.1016/j.cclet.2024.110341