Halogen-based functionalized chemistry engineering for high-performance supercapacitors
-
* Corresponding author.
E-mail address: yonghu@zjnu.edu.cn (Y. Hu)
1 These authors contributed equally to this work.
Citation: Wuquan Ye, Hongfei Wang, Junling Shen, Shahid Khan, Yijun Zhong, Jiqiang Ning, Yong Hu. Halogen-based functionalized chemistry engineering for high-performance supercapacitors[J]. Chinese Chemical Letters, ;2023, 34(1): 107198. doi: 10.1016/j.cclet.2022.02.004
C. Choi, D.S. Ashby, D.M. Butts, et al., Nat. Rev. Mater. 5 (2020) 5–19.
Y. Shao, M.F. El-Kady, J. Sun, et al., Chem. Rev. 118 (2018) 9233–9280.
doi: 10.1021/acs.chemrev.8b00252
J. Liu, J. Wang, C. Xu, et al., Adv. Sci. 5 (2018) 1700322.
doi: 10.1002/advs.201700322
F. Wang, X. Wu, X. Yuan, et al., Chem. Soc. Rev. 46 (2017) 6816–6854.
doi: 10.1039/C7CS00205J
T.S. Mathis, N. Kurra, X. Wang, et al., Adv. Energy Mater. 9 (2019) 1902007.
doi: 10.1002/aenm.201902007
W. Zuo, R. Li, C. Zhou, et al., Adv. Sci. 4 (2017) 1600539.
doi: 10.1002/advs.201600539
C. Li, J. Balamurugan, N.H. Kim, J.H. Lee, Adv. Energy Mater. 8 (2018) 1702014.
doi: 10.1002/aenm.201702014
J. Balamurugan, C. Li, V. Aravindan, N.H. Kim, J.H. Lee, Adv. Funct. Mater. 28
(2018) 1803287.
doi: 10.1002/adfm.201803287
Z. Pan, M. Liu, J. Yang, et al., Adv. Funct. Mater. 27 (2017) 1701122.
doi: 10.1002/adfm.201701122
G. Xiong, P. He, D. Wang, et al., Adv. Funct. Mater. 26 (2016) 5460–5470.
doi: 10.1002/adfm.201600879
G. Sun, X. Zhang, R. Lin, et al., Angew. Chem. Int. Ed. 54 (2015) 4651–4656.
doi: 10.1002/anie.201411533
N. Sulaiman, M.A. Hannan, A. Mohamed, et al., Appl. Energy 228 (2018)
2061–2079.
doi: 10.1016/j.apenergy.2018.07.087
L. Kouchachvili, W. Yaïci, E. Entchev, J. Power Sources 374 (2018) 237–248.
doi: 10.1016/j.jpowsour.2017.11.040
M.K. Döşoğlu, O. Özkaraca, U. Güvenç, Electr. Eng. 101 (2019) 1119–1132.
doi: 10.1007/s00202-019-00857-y
L. Kong, J. Yu, G. Cai, Int. J. Hydrog. Energy 44 (2019) 25129–25144.
doi: 10.1016/j.ijhydene.2019.05.097
Y.S. Perdana, S.M. Muyeen, A. Al-Durra, H.K. Morales-Paredes, M.G. Simões, IEEE Trans. Sustain. Energy 10 (2019) 1370–1379.
doi: 10.1109/tste.2018.2868073
M.S. Masaki, L. Zhang, X. Xia, Appl. Energy 242 (2019) 393–402.
doi: 10.1016/j.apenergy.2019.03.049
W. Lu, J. Shen, P. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 15441–15447.
doi: 10.1002/anie.201907516
M. Yu, X. Cheng, Y. Zeng, et al., Angew. Chem. Int. Ed. 55 (2016) 6762–6766.
doi: 10.1002/anie.201602631
Z. Yuan, H. Wang, J. Shen, et al., J. Mater. Chem. A 8 (2020) 22163–22174.
doi: 10.1039/d0ta08006c
L. Feng, K. Wang, X. Zhang, et al., Adv. Funct. Mater. 28 (2018) 1704463.
doi: 10.1002/adfm.201704463
W. Ye, H. Wang, J. Ning, Y. Zhong, Y. Hu, J. Energy Chem. 57 (2021) 219–232.
doi: 10.1016/j.jechem.2020.09.016
H. Wang, Y. Yang, Q. Li, et al., Sci. China Mater. 64 (2021) 840–851.
doi: 10.1007/s40843-020-1476-2
N. Chen, X. Huang, L. Qu, Phys. Chem. Chem. Phys. 17 (2015) 32077–32098.
doi: 10.1039/C5CP04391C
T. Wang, X. Zang, X. Wang, et al., Energy Storage Mater. 30 (2020) 367–384.
doi: 10.1016/j.ensm.2020.04.044
X. Zhang, X. Liu, Y. Zeng, Y. Tong, X. Lu, Small Methods 4 (2020) 1900823.
doi: 10.1002/smtd.201900823
S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Adv. Energy Mater. 10 (2020)
2001239.
doi: 10.1002/aenm.202001239
F. Wang, L. Chen, H. Li, et al., Chin. Chem. Lett. 31 (2020) 1986–1990.
doi: 10.1016/j.cclet.2020.02.020
C. Li, X. Zhang, K. Wang, et al., J. Energy Chem. 54 (2021) 352–367.
doi: 10.1016/j.jechem.2020.05.058
C. Li, X. Zhang, Z. Lv, et al., Chem. Eng. J. 414 (2021) 128781.
doi: 10.1016/j.cej.2021.128781
Y. Gu, L. Miao, Y. Yin, et al., Chin. Chem. Lett. 32 (2021) 1491–1496.
doi: 10.1016/j.cclet.2020.09.029
M. Zhang, W. Wang, X. Liang, et al., Chin. Chem. Lett. 32 (2021) 2217–2221.
doi: 10.1016/j.cclet.2020.12.017
H. Wang, W. Ye, Y. Yang, Y. Zhong, Y. Hu, Nano Energy 85 (2021) 105942.
doi: 10.1016/j.nanoen.2021.105942
Y. Yang, D. Chen, H. Wang, et al., Chem. Eng. J. 431 (2022) 133250.
doi: 10.1016/j.cej.2021.133250
Q. Abbas, R. Raza, I. Shabbir, A.G. Olabi, J. Sci. Adv. Mater. Dev. 4 (2019)
341–352.
X. Zhao, Z. Zhao-Karger, M. Fichtner, X. Shen, Angew. Chem. Int. Ed. 59 (2020)
5902–5949.
doi: 10.1002/anie.201902842
P. Jadhav, G.M. Joshi, J. Polym. Res. 28 (2021) 73.
doi: 10.26611/10131832
M. Gu, B.S. Kim, Acc. Chem. Res. 54 (2021) 57–69.
doi: 10.1021/acs.accounts.0c00524
Y. Gao, Q. Wang, G.Z. Ji, A.M. Li, J.M. Niu, RSC Adv. 11 (2021) 5361–5383.
doi: 10.1039/d0ra08993a
N.P.D. Ngidi, M.A. Ollengo, V.O. Nyamori, Int. J. Energy Res. 43 (2019)
1702–1734.
doi: 10.1002/er.4326
T. Jin, J. Chen, C. Wang, Y. Qian, L. Lu, J. Mater. Sci. 55 (2020) 12103–12113.
doi: 10.1007/s10853-020-04821-1
S. Saha, P. Samanta, N.C. Murmu, et al., Chem. Eng. J. 339 (2018) 334–345.
doi: 10.1016/j.cej.2018.01.141
T. Zhu, S. Liu, K. Wan, et al., ACS Appl. Energy Mater. 3 (2020) 4949–4957.
doi: 10.1021/acsaem.0c00500
Y. Zhao, C. Huang, Y. He, et al., J. Power Sources 456 (2020) 228023.
doi: 10.1016/j.jpowsour.2020.228023
Y. Geng, Y. Song, M. Zhong, et al., Mater. Lett. 64 (2010) 2673–2675.
doi: 10.1016/j.matlet.2010.09.009
R.R. Nair, W. Ren, R. Jalil, et al., Small 6 (2010) 2877–2884.
doi: 10.1002/smll.201001555
M.H. Kim, J.H. Yang, Y.M. Kang, et al., Colloids Surf. A: Physicochem. Eng. Asp.
443 (2014) 535–539.
doi: 10.1111/hdi.12118
H. An, Y. Li, P. Long, et al., J. Power Sources 312 (2016) 146–155.
doi: 10.1016/j.jpowsour.2016.02.057
E. Jokar, S. Shahrokhian, A. Iraji, E. Asadian, H. Hosseini, J. Energy Storage 17
(2018) 465–473.
doi: 10.1016/j.est.2018.04.014
C. Sun, Y. Feng, Y. Li, et al., Nanoscale 6 (2014) 2634–2641.
doi: 10.1039/C3NR04609E
R. Zhang, Z.L. Liu, T.N. Gao, et al., Angew. Chem. Int. Ed. 60 (2021) 24299–24305.
doi: 10.1002/anie.202111239
Y. Gao, C. Zhi, P. Cui, et al., Chem. Eng. J. 400 (2020) 125967.
doi: 10.1016/j.cej.2020.125967
D. Zhang, X. Han, X. Kong, F. Zhang, X. Lei, Nano-Micro Lett. 12 (2020) 107.
doi: 10.1007/s40820-020-00440-2
M. Hu, Z. Li, T. Hu, et al., ACS Nano 10 (2016) 11344–11350.
doi: 10.1021/acsnano.6b06597
M.R. Lukatskaya, S.M. Bak, X. Yu, et al., Adv. Energy Mater. 5 (2015) 1500589.
doi: 10.1002/aenm.201500589
S. Kumar, D. Kang, H. Hong, et al., RSC Adv. 10 (2020) 41837–41845.
doi: 10.1039/d0ra05376g
J. Chen, H. Chen, M. Chen, et al., Chem. Eng. J. 428 (2022) 131380.
doi: 10.1016/j.cej.2021.131380
C. Lu, L. Yang, B. Yan, et al., Adv. Funct. Mater. 30 (2020) 2000852.
doi: 10.1002/adfm.202000852
D. Liu, Q. Li, H. Zhao, J. Mater. Chem. A 6 (2018) 11471–11478.
doi: 10.1039/C8TA02580K
T. Aytug, M.S. Rager, W. Higgins, et al., ACS Appl. Mater. Interfaces 10 (2018)
11008–11017.
doi: 10.1021/acsami.8b01938
L. Jiang, L. Sheng, C. Long, Z. Fan, Nano Energy 11 (2015) 471–480.
doi: 10.1016/j.nanoen.2014.11.007
Z. Song, Y. Fan, Z. Sun, et al., J. Mater. Chem. A 5 (2017) 20797–20807.
doi: 10.1039/C7TA06040H
Y. Xu, C.Y. Chen, Z. Zhao, et al., Nano Lett. 15 (2015) 4605–4610.
doi: 10.1021/acs.nanolett.5b01212
G.G. Jang, B. Song, L. Li, et al., Nano Energy 32 (2017) 88–95.
doi: 10.1016/j.nanoen.2016.12.016
Z. Pan, H. Zhi, Y. Qiu, et al., Nano Energy 46 (2018) 266–276.
doi: 10.1016/j.nanoen.2018.02.007
Z. Song, W. Li, Y. Bao, et al., Carbon 136 (2018) 46–53.
doi: 10.1016/j.carbon.2018.04.036
H. Jiang, X. Ye, Y. Zhu, et al., ACS Sustain. Chem. Eng. 7 (2019) 18844–18853.
doi: 10.1021/acssuschemeng.9b03810
N. Mahmood, M. Tahir, A. Mahmood, et al., Nano Energy 11 (2015) 267–276.
doi: 10.1016/j.nanoen.2014.11.015
Y. Zhao, S. Liu, B. Zhang, et al., Nanoscale Res. Lett. 13 (2018) 415.
doi: 10.1186/s11671-018-2791-z
G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196 (2011) 1–12.
doi: 10.1016/j.jpowsour.2010.06.084
C. Xia, W. Chen, X. Wang, et al., Adv. Energy Mater. 5 (2015) 1401805.
doi: 10.1002/aenm.201401805
M. Rajesh, C.J. Raj, B.C. Kim, et al., Electrochim. Acta 220 (2016) 373–383.
doi: 10.1016/j.electacta.2016.10.118
W. Qingshuo, M. Masakazu, K. Kazuhiro, N. Yasuhisa, I. Takao, Materials 8
(2015) 732–750.
doi: 10.3390/ma8020732
B. Xu, S.A. Gopalan, A.I. Gopalan, et al., Sci. Rep. 7 (2017) 46779.
doi: 10.1038/srep46779
H. Shi, C. Liu, Q. Jiang, J. Xu, Adv. Electron. Mater. 1 (2015) 1500017.
doi: 10.1002/aelm.201500017
B. Cho, K. Park, J. Baek, et al., Nano Lett. 14 (2014) 3321–3327.
doi: 10.1021/nl500748y
N. Massonnet, A. Carella, A. de Geyer, J. Faure-Vincent, J.P. Simonato, Chem.
Sci. 6 (2015) 412–417.
doi: 10.1039/C4SC02463J
S.G. Im, K.K. Gleason, Macromolecules 40 (2007) 6552–6556.
doi: 10.1021/ma0628477
M. Rajesh, R. Manikandan, B.C. Kim, et al., Electrochim. Acta 354 (2020)
136669.
doi: 10.1016/j.electacta.2020.136669
W. Liu, M. Ulaganathan, I. Abdelwahab, et al., ACS Nano 12 (2018) 852–860.
doi: 10.1021/acsnano.7b08354
P. Katti, K.V. Kundan, S. Kumar, S. Bose, Polymer 122 (2017) 184–193.
doi: 10.1016/j.polymer.2017.06.059
V. Georgakilas, M. Otyepka, A.B. Bourlinos, et al., Chem. Rev. 112 (2012)
6156–6214.
doi: 10.1021/cr3000412
A. Keerthi, B. Radha, D. Rizzo, et al., J. Am. Chem. Soc. 139 (2017)
16454–16457.
doi: 10.1021/jacs.7b09031
G. Bottari, M. Á. Herranz, L. Wibmer, et al., Chem. Soc. Rev. 46 (2017)
4464–4500.
doi: 10.1039/C7CS00229G
H. Au, N. Rubio, M.S.P. Shaffer, Chem. Sci. 9 (2018) 209–217.
doi: 10.1039/C7SC03455E
Z. Liu, H. Zhou, Z. Huang, et al., J. Mater. Chem. A 1 (2013) 3454–3462.
doi: 10.1039/c3ta01162c
Y. Liang, D. Wu, X. Feng, K. Müllen, Adv. Mater. 21 (2009) 1679–1683.
doi: 10.1002/adma.200803160
R. Khan, R. Nakagawa, B. Campeon, Y. Nishina, ACS Appl. Mater. Interfaces 12
(2020) 12736–12742.
doi: 10.1021/acsami.9b21082
C. Hu, Q. Yue, F. Zhao, et al., CCS Chem. 2 (2020) 1872–1883.
B.B. Zhang, H. Hao, F.Y. Zhang, et al., J. Appl. Electrochem. 50 (2020)
1007–1018.
doi: 10.1007/s10800-020-01455-8
Z. Xiao, Z. Yang, L. Zhang, H. Pan, R. Wang, ACS Nano 11 (2017) 8488–8498.
doi: 10.1021/acsnano.7b04442
P. Zhao, X. Ye, Y. Zhu, et al., J. Power Sources 442 (2019) 227188.
doi: 10.1016/j.jpowsour.2019.227188
X. Luo, Y. Wang, Z. Shen, et al., J. Colloid Interface Sci. 599 (2021) 351–359.
doi: 10.1016/j.jcis.2021.04.108
B. Yan, S. Matsushita, S. Suzuki, et al., Carbohydr. Polym. 196 (2018) 332–338.
doi: 10.1016/j.carbpol.2018.05.050
J. Yang, J. Zhang, X. Li, et al., Nano Energy 53 (2018) 916–925.
doi: 10.1016/j.nanoen.2018.09.044
P. Wu, L. Feng, Y. Liang, et al., J. Mater. Sci: Mater. Electron. 31 (2020)
5385–5401.
doi: 10.1007/s10854-020-03099-y
Y. Gao, J. Zhang, X. Luo, et al., Nano Energy 72 (2020) 104666.
doi: 10.1016/j.nanoen.2020.104666
D. Liu, K. Ni, J. Ye, et al., Adv. Mater. 30 (2018) e1802104.
doi: 10.1002/adma.201802104
R. Vinodh, P.J.S. Rana, C.V.V.M. Gopi, et al., Polym. Int. 68 (2019) 929–935.
doi: 10.1002/pi.5783
Z. Liu, Y. Huang, Y. Huang, et al., Chem. Soc. Rev. 49 (2020) 180–232.
doi: 10.1039/c9cs00131j
M.H. Alfaruqi, V. Mathew, J. Gim, et al., Chem. Mater. 27 (2015) 3609–3620.
doi: 10.1021/cm504717p
B. Tang, G. Fang, J. Zhou, et al., Nano Energy 51 (2018) 579–587.
doi: 10.1016/j.nanoen.2018.07.014
J. Cheng, Y.H. Wen, G.P. Cao, Y.S. Yang, J. Power Sources 196 (2011) 1589–1592.
doi: 10.21437/interspeech.2011-477
X. Li, Y. Tang, J. Zhu, et al., Small 16 (2020) 2001935.
doi: 10.1002/smll.202001935
Q.Q. Qiu, S.S. Yuan, J. Bao, et al., J. Energy Chem. 61 (2021) 574–581.
doi: 10.1016/j.jechem.2021.02.012
E.C. Vermisoglou, P. Jakubec, A. Bakandritsos, et al., Chem. Mater. 31 (2019)
4698–4709.
doi: 10.1021/acs.chemmater.9b00655
T. Liu, Y. Lan, Q. Zhu, et al., Chem. Eng. J. 421 (2021) 129993.
doi: 10.1016/j.cej.2021.129993
W. Zhang, L. Zhao, H. Li, P. Manasa, F. Ran, J. Power Sources 491 (2021)
229612.
doi: 10.1016/j.jpowsour.2021.229612
D.B. Kong, Y. Gao, Z.C. Xiao, et al., Adv. Mater. 31 (2019) 1804973.
doi: 10.1002/adma.201804973
M. Xia, T. Liu, N. Peng, et al., Small Methods 3 (2019) 1900119.
doi: 10.1002/smtd.201900119
Y. Gogotsi, R.M. Penner, ACS Nano 12 (2018) 2081–2083.
doi: 10.1021/acsnano.8b01914
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
A-Yang Wang , Sheng-Hua Zhou , Mao-Yin Ran , Xin-Tao Wu , Hua Lin , Qi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377
Shuheng Zhang , Yuanyuan Zhang , Wanyu Wang , Yuzhu Hu , Xinchuan Chen , Bilan Wang , Xiang Gao . A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. Chinese Chemical Letters, 2024, 35(12): 109658-. doi: 10.1016/j.cclet.2024.109658
Xilin Bai , Wei Deng , Jingjuan Wang , Ming Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959
Linjie Ju , Zhongxi Huang , Qian Shen , Chan Fu , Shuanghe Li , Wenjie Duan , Chenfeng Xu , Weizhen An , Zhiqiang Zhai , Jifu Wei , Changmin Yu , Guoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450
Jie Ma , Jianxiang Wang , Jianhua Yuan , Xiao Liu , Yun Yang , Fei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693
Shaoqing Du , Xinyong Liu , Xueping Hu , Peng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Junhua Wang , Xin Lian , Xichuan Cao , Qiao Zhao , Baiyan Li , Xian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
Wenyu Gao , Liming Zhang , Chuang Zhao , Lixiang Liu , Xingran Yang , Jinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447
Zheng Zhao , Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270
Liping Zhao , Xixi Guo , Zhimeng Zhang , Xi Lu , Qingxuan Zeng , Tianyun Fan , Xintong Zhang , Fenbei Chen , Mengyi Xu , Min Yuan , Zhenjun Li , Jiandong Jiang , Jing Pang , Xuefu You , Yanxiang Wang , Danqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506
Ruixin Liu , Feng Shi , Yanping Xia , Haibing Zhu , Jiawen Cao , Kai Peng , Chuanli Ren , Juan Li , Zhanjun Yang . Universal MOF nanozyme-induced catalytic amplification strategy for label-free electrochemical immunoassay. Chinese Chemical Letters, 2024, 35(11): 109664-. doi: 10.1016/j.cclet.2024.109664
Zhendong Liu , Sainan Liu , Bin Liu , Qi Meng , Meng Yuan , Chunzheng Yang , Yulong Bian , Ping'an Ma , Jun Lin . Fe(Ⅲ)-juglone nanoscale coordination polymers for cascade chemodynamic therapy through synergistic ferroptosis and apoptosis strategy. Chinese Chemical Letters, 2024, 35(11): 109626-. doi: 10.1016/j.cclet.2024.109626