Development prospects of metal-based two-dimensional nanomaterials in lithium-sulfur batteries
-
* Corresponding authors.
E-mail addresses: hytyl@163.com (Y. Tan), hqzhou@hunnu.edu.cn (H. Zhou).
Citation: Yuxue Mo, Liling Liao, Dongyang Li, Rongwu Pan, Yanhong Deng, Yanliang Tan, Haiqing Zhou. Development prospects of metal-based two-dimensional nanomaterials in lithium-sulfur batteries[J]. Chinese Chemical Letters, ;2023, 34(1): 107130. doi: 10.1016/j.cclet.2022.01.023
J. Deng, C. Bae, A. Denlinger, T. Miller, Joule 4 (2020) 509-515.
doi: 10.1002/aenm.202002893
P. Wang, B. Xi, M. Huang, et al., Adv. Energy Mater. 11 (2021) 2002893.
doi: 10.1002/aenm.202002893
Y.T. Liu, S. Liu, G.R. Li, X.P. Gao, Adv. Mater. 33 (2021) 2003955.
doi: 10.1002/adma.202003955
C. Wang, L. Sun, L. Kai, et al., ACS Appl. Mater. Interfaces 12 (2020) 43560–43567.
doi: 10.1021/acsami.0c09567
K.H. Su, P.W. Chi, T. Paul, et al., Mater. Today Phys. 18 (2021) 100373.
doi: 10.1016/j.mtphys.2021.100373
J. Conder, R. Bouchet, S. Trabesinger, et al., Nat. Energy 2 (2017) 17069.
doi: 10.1038/nenergy.2017.69
S.S. Zhang, J. Power Sources 231 (2013) 153–162.
doi: 10.1016/j.jpowsour.2012.12.102
R. Fang, S. Zhao, Z. Sun, et al., Adv. Mater. 29 (2017) 1606823.
doi: 10.1002/adma.201606823
Q. Shao, Z.S. Wu, J. Chen, Energy Storage Mater. 22 (2019) 284–310.
doi: 10.3390/microorganisms7090284
Z.W. Seh, W. Li, J.J. Cha, et al., Nat. Commun. 4 (2013) 1331.
doi: 10.1038/ncomms2327
S. Tao, W.F. Huang, S.Q. Chu, et al., Mater. Today Phys. 18 (2021) 100403.
doi: 10.1016/j.mtphys.2021.100403
J.X. Lin, Y.X. Mo, P.F. Zhang, et al., Mater. Today Energy 13 (2019) 267–276.
doi: 10.1016/j.mtener.2019.05.014
Y. Wu, D. Lei, C. Wang, Mater. Today Phys. 18 (2021) 100395.
doi: 10.1016/j.mtphys.2021.100395
S.Y. Liu, C.Y. Fan, Y.H. Shi, et al., ACS Appl. Mater. Interfaces 10 (2018) 509–516.
doi: 10.1021/acsami.7b14118
M. Hagen, D. Hanselmann, K. Ahlbrecht, et al., Adv. Energy Mater. 5 (2015)
1401986.
doi: 10.1002/aenm.201401986
H. Hong, N. Mohamad, K. Chae, et al., J. Mater. Chem. A 9 (2021)
10012–10038.
doi: 10.1039/d1ta01091c
J. Nai, X. Zhao, H. Yuan, X. Tao, L. Guo, Nano Res. 14 (2021) 2053–2066.
doi: 10.1007/s12274-021-3506-9
T. Li, C. He, W. Zhang, J. Energy Chem. 52 (2021) 121–129.
doi: 10.1016/j.jechem.2020.04.042
X. Yang, G. Xia, J. Ye, W. Du, C. Hu, Appl. Surf. Sci. 22 (2021) 148632.
F. Bonaccorso, L. Colombo, G. Yu, et al., Science 347 (2015) 1246501.
doi: 10.1126/science.1246501
J.S. Zeng, L. Zhang, Q. Zhou, et al., Small 18 (2022) 2104624.
doi: 10.1002/smll.202104624
F.M. Cai, L.L. Liao, Y. Zhao, et al., J. Mater. Chem. A 9 (2021) 10199–10207.
doi: 10.1039/d1ta00144b
L.L. Liao, L. Yang, G. Zhao, et al., Chin. J. Chem. 39 (2021) 288–294.
doi: 10.1002/cjoc.202000487
D.Y. Li, L.L. Liao, H.Q. Zhou, et al., Mater. Today Phys. 16 (2021) 100314.
doi: 10.1016/j.mtphys.2020.100314
W. Xue, Z. Shi, L. Suo, et al., Nat. Energy 4 (2019) 374–382.
doi: 10.1038/s41560-019-0351-0
L.L. Liao, J.Y. Sun, D.Y. Li, et al., Small 16 (2020) 1906629.
doi: 10.1002/smll.201906629
C. Zhao, G.L. Xu, Z. Yu, et al., Nat. Nanotechnol. 16 (2021) 166–173.
doi: 10.1038/s41565-020-00797-w
J.Y. Sun, F. Tian, F. Yu, et al., ACS Catal. 10 (2020) 1511.
doi: 10.1021/acscatal.9b03030
L. Shi, Z. Li, L.C. Ju, et al., J. Mater. Chem. A 8 (2020) 1059–1065.
doi: 10.1039/c9ta12743g
Q. Zhou, L.L. Liao, Q.H. Bian, et al., Small 18 (2022) 2105642.
doi: 10.1002/smll.202105642
D.R. Deng, C. Bai, F. Xue, et al., ACS Appl. Mater. Interfaces 11 (2019)
11474–11480.
doi: 10.1021/acsami.8b22660
J. Miao, C. Wang, Nano Res. 14 (2021) 1878–1888.
doi: 10.1007/s12274-020-3001-8
L. Liao, C. Cheng, H. Zhou, et al., Mater. Today Phys. 22 (2022) 100589.
doi: 10.1016/j.mtphys.2021.100589
X. Song, T. Zhang, H. Yang, H. Ji, H. Gao, Nano Res. 14 (2021) 3810–3819.
doi: 10.1007/s12274-021-3668-5
Q. Li, Y. Liu, L. Yang, Y. Wang, B.J. Zhong, Colloid Interf. Sci. 585 (2021) 43–50.
doi: 10.1016/j.jcis.2020.11.084
B. Bwa, A. Jh, A. Lz, Mater. Today Commun. 27 (2021) 102312.
doi: 10.1016/j.mtcomm.2021.102312
D. Xie, S. Mei, Y. Xu, et al., ChemSusChem 14 (2021) 1404–1413.
doi: 10.1002/cssc.202002731
T. Shi, C. Zhao, C. Yin, H. Yin, K. Yu, Nanotechnology 31 (2020) 495406.
doi: 10.1088/1361-6528/abb490
X. Zhou, J. Tian, Q. Wu, J. Hu, C. Li, Energy Storage Mater. 24 (2020) 644–654.
doi: 10.1016/j.ensm.2019.06.009
C.P. Yang, Y.X. Yin, H. Ye, et al., ACS Appl. Mater. Interfaces 6 (2014)
8789–8795.
doi: 10.1021/am501627f
X. Yang, Z. Meng, T. Ca, W.Q. Han, ACS Appl. Mater. Interfaces 7 (2015) 25202–25210.
doi: 10.1021/acsami.5b08129
C. Jin, W. Zhang, Z. Zhuang, et al., J. Mater. Chem. A 5 (2017) 632–640.
doi: 10.1039/C6TA07620C
S. Zhang, D. Xu, C. Su, et al., Chem. Commun. 56 (2020) 810–813.
doi: 10.1039/c9cc07693j
S. Li, Q. Xiang, M.K. Aslam, et al., J. Electroanal. Chem. 850 (2019) 113408.
doi: 10.1016/j.jelechem.2019.113408
J.H. Ahn, G.K. Veerasubramani, S.M. Lee, T.S. You, D.W. Kim, J. Electrochem.
Soc. 166 (2019) A5201–A5209.
doi: 10.1149/2.0311903jes
Y. Zhang, G. Li, J. Wang, et al., Adv. Funct. Mater. 30 (2020) 2001165.
doi: 10.1002/adfm.202001165
J. Li, Y. Xu, Y. Zhang, C. He, T. Li, J. Mater. Chem. A 8 (2020) 19544–19554.
doi: 10.1039/d0ta06701f
H. Li, S. Ma, H. Cai, et al., Energy Storage Mater. 18 (2019) 338–348.
doi: 10.1016/j.ensm.2018.08.016
Y. Qiu, L. Fan, M. Wang, et al., ACS Nano 14 (2020) 16105–16113.
doi: 10.1021/acsnano.0c08056
C. Song, Q. Jin, W. Zhang, et al., J. Colloid Interf. Sci. 595 (2021) 51–58.
doi: 10.1016/j.jcis.2021.03.125
P. Zeng, C. Liu, X. Zhao, et al., ACS Nano 14 (2020) 11558–11569.
doi: 10.1021/acsnano.0c04054
Y. Zhu, G. Li, D. Luo, et al., Nano Energy 79 (2021) 105393.
doi: 10.1016/j.nanoen.2020.105393
J. He, A. Bhargav, A. Manthiram, ACS Nano 15 (2021) 8583–8591.
doi: 10.1021/acsnano.1c00446
G.M. Zhou, S.Y. Zhao, T.S. Wang, et al., Nano Lett. 20 (2020) 1252–1261.
doi: 10.1021/acs.nanolett.9b04719
C.G. Wang, H.W. Song, C.C. Yu, et al., J. Mater. Chem. A 8 (2020) 3421–3430.
doi: 10.1039/c9ta11680j
Z.Z. Liu, L. Zhou, Q. Ge, et al., ACS Appl. Mater. Interfaces 10 (2018)
19311–19317.
doi: 10.1021/acsami.8b03830
H. Wang, T. Zhou, D. Li, et al., ACS Appl. Mater. Interfaces 9 (2016) 4320–4325.
H. Zhang, M. Zou, W. Zhao, et al., ACS Nano 13 (2019) 3982–3991.
doi: 10.1021/acsnano.8b07843
J. Wei, H. Su, C. Qin, et al., J. Electroanal. Chem. 837 (2019) 184–190.
doi: 10.1016/j.jelechem.2019.02.034
J. Pu, Z. Shen, J. Zheng, et al., Nano Energy 37 (2017) 7–14.
doi: 10.1016/j.nanoen.2017.05.009
Z.Y. Wang, L. Wang, S. Liu, G.R. Li, X.P. Gao, Adv. Funct. Mater. 29 (2019)
1901051.
doi: 10.1002/adfm.201901051
X. Song, D. Tian, Y. Qiu, et al., Energy Storage Mater. 41 (2021) 248–254.
doi: 10.1016/j.ensm.2021.05.028
W. Ren, M. Wei, U.M. Muhammad, et al., ChemSusChem 11 (2018) 2695–2702.
doi: 10.1002/cssc.201801212
X. Zhang, Y. Tian, W. Lu, et al., ChemElectroChem 8 (2021) 3629–3636.
doi: 10.1002/celc.202100783
Y.X. Mo, J.X. Lin, Y.J. Wu, et al., ACS Appl. Mater. Interface 11 (2019)
4065–4073.
doi: 10.1021/acsami.8b20225
Z. Sun, S. Vijay, H.H. Heenen, et al., Adv. Energy Mater. 10 (2020) 1904010.
doi: 10.1002/aenm.201904010
X. Yang, G. Xia, J. Ye, et al., Appl. Surf. Sci. 22 (2021) 148632.
B. Guan, Y. Zhang, L. Fan, et al., ACS Nano 13 (2019) 6742–6750.
doi: 10.1021/acsnano.9b01329
W. Sun, Y. Li, S. Liu, et al., Chem. Eng. J. 416 (2021) 129166.
doi: 10.1016/j.cej.2021.129166
Z. Zhuang, Q. Kang, D. Wang, Y. Li, Nano Res. 13 (2020) 11.
doi: 10.1117/12.2570710
Z.Z. Du, X.J. Chen, W. Hu, et al., J. Am. Soc. Chem. 141 (2019) 3977–3985.
doi: 10.1021/jacs.8b12973
M. Wang, L. Fan, X. Sun, et al., ACS Energy Lett. 5 (2020) 3041–3050.
doi: 10.1021/acsenergylett.0c01564
Y. Wang, J. Shen, L.C. Xu, et al., Phys. Chem. Chem. Phys. 21 (2019) 18559.
doi: 10.1039/c9cp03419f
S. Liu, C. Zhang, W. Yue, X. Chen, X. Yang, ACS Appl. Energy Mater. 2 (2019)
5009–5018.
doi: 10.1021/acsaem.9b00680
R. Meng, Q. Deng, C. Peng, et al., Nano Today 35 (2020) 100991.
doi: 10.1016/j.nantod.2020.100991
J. He, A. Bhargav, A. Manthiram, Adv. Mater. 32 (2020) 2004741.
doi: 10.1002/adma.202004741
W. Yang, W. Yang, L. Dong, et al., J. Mater. Chem. A 7 (2019) 13103–13112.
doi: 10.1039/c9ta03227d
J. Liu, S. Xiao, L. Chang, et al., J. Energy Chem. 56 (2021) 343–352.
doi: 10.1080/08923973.2021.1913503
H.Y. Zhou, Z.Y. Sui, K. Amin, et al., ACS Appl. Mater. Interfaces 12 (2020)
13904–13913.
doi: 10.1021/acsami.9b23006
H. Shi, J. Qin, P. Lu, et al., Adv. Funct. Mater. 31 (2021) 2102314.
doi: 10.1002/adfm.202102314
J. Zhang, C. You, H. Lin, J. Wang, Energy Environ. Mater. 5 (2022) 731–750.
doi: 10.1002/eem2.12250
J.J. Yuan, Z. Huang, Y.Z. Song, M.Y. Li, H.Y. Li, Chem. Eng. J. 426 (2021) 128705.
doi: 10.1016/j.cej.2021.128705
D. Luo, Z. Zhang, G. Li, et al., ACS Nano 14 (2020) 4849–4860.
doi: 10.1021/acsnano.0c00799
Z. Qiao, Y. Zhang, Z. Meng, et al., Adv. Funct. Mater. 31 (2021) 2100970.
doi: 10.1002/adfm.202100970
C. Ma, Y. Zhang, Y. Feng, et al., Adv. Mater. 33 (2021) 2100171.
doi: 10.1002/adma.202100171
Y.J. Zhang, J. Qu, Q.Y. Ji, et al., Carbon 155 (2019) 353–360.
doi: 10.14336/ad.2018.0617
H. Pan, Z. Tan, H. Zhou, et al., J. Energy Chem. 39 (2019) 101–108.
doi: 10.1016/j.jechem.2019.01.019
H. Yang, Y. Yang, X. Zhang, et al., ACS Appl. Mater. Interfaces 11 (2019)
31860–31868.
doi: 10.1021/acsami.9b08962
Z. Zhao, Z. Yi, H. Li, R. Pathak, Z. Yang, et al., Nano Energy 81 (2021) 105621.
doi: 10.1016/j.nanoen.2020.105621
X. Li, X. Yang, J. Ye, G. Xia, Z. Fu, et al., Chem. Eng. J. 405 (2021) 126947.
doi: 10.1016/j.cej.2020.126947
Y. Wang, L. Yang, Y. Chen, et al., ACS Appl. Mater. Interfaces 12 (2020)
57859–57869.
doi: 10.1021/acsami.0c16631
B. Guan, X. Sun, Y. Zhang, et al., Chin. Chem. Lett. 32 (2021) 2249–2253.
doi: 10.1016/j.cclet.2020.12.051
Y. Hu, A. Hu, J. Wang, et al., J. Mater. Chem. A 9 (2021) 9771–9779.
doi: 10.1039/d1ta00798j
J.X. Lin, X.M. Qu, X.H. Wu, et al., ACS Sustainable Chem. Eng. 9 (2021) 1804–1813.
doi: 10.1021/acssuschemeng.0c08049
J. Wang, W. Cai, X. Mu, et al., Nano Res. 14 (2021) 4865–4877.
doi: 10.1007/s12274-021-3446-4
J. Xie, B. Li, H. Peng, et al., Adv. Mater. 31 (2019) 1903813.
doi: 10.1002/adma.201903813
Y. Zhang, X. Liu, L. Wu, et al., J. Mater. Chem. A 8 (2020) 2741–2751.
doi: 10.1039/c9ta12135h
P. Li, H. Lv, Z. Li, et al., Adv. Mater. 33 (2021) 2007803.
doi: 10.1002/adma.202007803
J. Cui, Z. Li, J. Li, et al., J. Mater. Chem. A 8 (2020) 1896–1903.
doi: 10.1039/c9ta11250b
Z. Chang, Y. Qiao, J. Wang, H. Deng, H.J. Zhou, J. Mater. Chem. A 9 (2021)
4870–4879.
doi: 10.1039/d0ta10495g
P. Wang, B. Xi, Z. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 15563–15571.
doi: 10.1002/anie.202104053
Y. Tian, G. Li, Y. Zhang, et al., Adv. Mater. 32 (2019) 1904876.
C. Chao, Q. Jiang, H. Xu, et al., Nano Energy 76 (2020) 105033.
doi: 10.1016/j.nanoen.2020.105033
N. Li, Y. Xie, S. Peng, X. Xiong, K. Han, J. Energy Chem. 42 (2020) 128–137.
K. Xu, X. Liang, L.L. Wang, et al., Rare Met. 40 (2021) 2810–2818.
doi: 10.1007/s12598-020-01686-w
X. Liu, G. Feng, Y. Li, et al., Ind. Eng. Chem. Res. 59 (2020) 7538–7545.
doi: 10.1021/acs.iecr.9b06962
P. Cheng, P. Guo, K. Sun, et al., J. Membrane Sci. 619 (2021) 118780.
doi: 10.1016/j.memsci.2020.118780
G. Yan, C. Xu, Z. Meng, et al., Nanoscale 12 (2020) 24368–24375.
doi: 10.1039/d0nr06429g
W. Tian, B. Xi, Y. Gu, et al., Nano Res. 13 (2020) 2673–2682.
doi: 10.1007/s12274-020-2909-3
Z. Luo, X. Qiu, C. Liu, et al., Nano Energy 79 (2021) 105507.
doi: 10.1016/j.nanoen.2020.105507
Z. Luo, C. Liu, Y. Tian, et al., Energy Storage Mater. 27 (2020) 124–132.
doi: 10.1016/j.ensm.2020.01.025
Y. Liu, Y. Wu, J. Zheng, et al., Nano Energy 82 (2021) 105723.
doi: 10.1016/j.nanoen.2020.105723
L. Xue, W. Chen, Y. Hu, et al., Nano Energy 79 (2021) 105481.
doi: 10.1016/j.nanoen.2020.105481
C. Cui, R. Zhang, C. Fu, et al., ACS Appl. Mater. Interfaces 13 (2021) 28252–28260.
doi: 10.1021/acsami.1c06289
K. Yan, Z. Lu, H.W. Lee, et al., Nat. Energy 1 (2016) 16010.
doi: 10.1038/nenergy.2016.10
S.S. Chi, Q. Wang, B. Han, et al., Nano Lett. 20 (2020) 2724–2732.
doi: 10.1021/acs.nanolett.0c00352
D. Xie, H.H. Li, W.Y. Diao, et al., Energy Storage Mater. 27 (2020) 124–132.
doi: 10.1016/j.ensm.2020.01.025
J. Wang, S. Yi, J. Liu, et al., ACS Nano 14 (2020) 9819–9831.
doi: 10.1021/acsnano.0c02241
M. Gao, W.Y. Zhou, Y.X. Mo, et al., Adv. Powder Mater. 1 (2022) 100006.
doi: 10.1016/j.apmate.2021.09.006
R. Deng, M. Wang, H. Yu, et al., Energy Environ. Mater. 5 (2022) 777–799.
doi: 10.1002/eem2.12257
M. Jana, R. Xu, X.B. Cheng, et al., Energy Environ. Sci. 13 (2020) 1049–1075.
doi: 10.1039/c9ee02049g
J. Mei, T. Liao, Z. Sun, Energy Environ. Mater. 4 (2021) 1–18.
doi: 10.1002/eem2.12163
Y. Cao, X. Meng, A. Li, Energy Environ. Mater. 4 (2021) 363–391.
doi: 10.1002/eem2.12132
M.A. Pope, I.A. Aksay, Adv. Energy Mater. 5 (2015) 1500124.
doi: 10.1002/aenm.201500124
S.F. Ng, M.Y.L. Lau, W.J. Ong, Adv. Mater. 33 (2021) 2008654.
doi: 10.1002/adma.202008654
M. Zhao, B. Li, X. Zhang, J. Huang, Q. Zhang, ACS Cent. Sci. 6 (2020) 1095–1104.
doi: 10.1021/acscentsci.0c00449
L. Cong, H. Xie, J. Li, Adv. Energy Mater. 7 (2017) 1601906.
doi: 10.1002/aenm.201601906
S.W. Song, L. Yu, X. Xiao, et al., Mater. Today Phys. 13 (2020) 100216.
doi: 10.1016/j.mtphys.2020.100216
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066