Activation of sulfite by ferric ion for the degradation of 2,4,6-tribromophenol with the addition of sulfite in batches
-
* Corresponding author.
E-mail address: pengchao_xie@hust.edu.cn (P. Xie).
Citation:
Zongping Wang, Fan Bai, Lisan Cao, Siyang Yue, Jingwen Wang, Songlin Wang, Jun Ma, Pengchao Xie. Activation of sulfite by ferric ion for the degradation of 2,4,6-tribromophenol with the addition of sulfite in batches[J]. Chinese Chemical Letters,
;2022, 33(11): 4766-4770.
doi:
10.1016/j.cclet.2022.01.003
Z. Xiong, H. Zhang, W. Zhang, B. Lai, Y. Gang, Chem. Eng. J. 359 (2019) 13–31.
doi: 10.1016/j.cej.2018.11.111
X. Wang, X. Pu, Y. Yue, et al., Chin. Chem. Lett. 31 (2020) 2634–2640.
doi: 10.1016/j.cclet.2020.08.007
C. Koch, B. Sures, Environ. Pollut. 233 (2018) 706–713.
doi: 10.1016/j.envpol.2017.10.127
Y. Fujii, Y. Kato, N. Masuda, et al., Environ. Pollut. 237 (2018) 936–943.
doi: 10.1016/j.envpol.2018.03.015
B. Sha, A.K. Dahlberg, K. Wiberg, L. Ahrens, Environ. Pollut. 241 (2018) 319–330.
doi: 10.1016/j.envpol.2018.04.032
N.M.T. Folle, M. Azevedo-Linhares, J.R.E. Garcia, et al., Chemosphere 268 (2021) 128785.
doi: 10.1016/j.chemosphere.2020.128785
P. Guo, C. Yang, Z. Chu, et al., Appl. Catal. B: Environ. 297 (2021) 120467.
doi: 10.1016/j.apcatb.2021.120467
J. Du, B. Zhang, J. Li, et al., Chin. Chem. Lett. 31 (2020) 2575–2582.
doi: 10.1016/j.cclet.2020.07.050
D. Zhou, L. Chen, J. Li, et al., Chem. Eng. J. 346 (2018) 726–738.
doi: 10.1016/j.cej.2018.04.016
P. Xie, J. Ma, W. Liu, et al., Water Res. 69 (2015) 223–233.
doi: 10.1016/j.watres.2014.11.029
W.D. Oh, Z. Dong, T.T. Lim, Appl. Catal. B: Environ. 194 (2016) 169–201.
doi: 10.1016/j.apcatb.2016.04.003
J. Wang, S. Wang, Chem. Eng. J. 334 (2018) 1502–1517.
doi: 10.1016/j.cej.2017.11.059
J. Qi, J. Liu, F. Sun, et al., Chin. Chem. Lett. 32 (2021) 1814–1818.
doi: 10.1016/j.cclet.2020.11.026
M. Zhang, J. He, Y. Chen, et al., Chin. Chem. Lett. 31 (2020) 2721–2724.
doi: 10.1016/j.cclet.2020.05.001
C. Luo, J. Gao, D. Wu, et al., Chem. Eng. J. 358 (2019) 1342–1350.
doi: 10.1016/j.cej.2018.10.084
Y. Ji, D. Kong, J. Lu, et al., J. Hazard. Mater. 313 (2016) 229–237.
doi: 10.1016/j.jhazmat.2016.04.033
J.Y. Fang, C. Shang, Environ. Sci. Technol. 46 (2012) 8976–8983.
doi: 10.1021/es300658u
Z. Wang, Y. Shao, N. Gao, et al., Chem. Eng. J. 381 (2020) 122660.
doi: 10.1016/j.cej.2019.122660
S. Wu, L. Shen, Y. Lin, et al., Chem. Eng. J. 414 (2021) 128872.
doi: 10.1016/j.cej.2021.128872
P. Xie, Y. Guo, Y. Chen, et al., Chem. Eng. J. 314 (2017) 240–248.
doi: 10.1016/j.cej.2016.12.094
D. Zhou, L. Chen, C. Zhang, et al., Water Res. 57 (2014) 87–95.
doi: 10.1016/j.watres.2014.03.016
P. Xie, L. Zhang, J. Wang, et al., Sep. Purif. Technol. 235 (2020) 116197.
doi: 10.1016/j.seppur.2019.116197
P. Xie, L. Zhang, J. Chen, et al., Water Res. 149 (2019) 169–178.
doi: 10.1016/j.watres.2018.10.078
Z. Wang, L. Cao, Y. Wan, et al., Chemosphere 285 (2021) 131442.
doi: 10.1016/j.chemosphere.2021.131442
L. Zhang, L. Chen, M. Xiao, et al., Ind. Eng. Chem. Res. 52 (2013) 10089–10094.
doi: 10.1021/ie400469u
M. Igarashi, Q. Zhu, M. Sasaki, et al., J. Mol. Catal. A: Chem. 413 (2016) 100–106.
doi: 10.1016/j.molcata.2015.12.017
Q. Zhu, S. Maeno, M. Sasaki, et al., Appl. Catal. B: Environ. 163 (2015) 459–466.
doi: 10.1016/j.apcatb.2014.08.035
Y. Yuan, T. Luo, J. Xu, et al., Chem. Eng. J. 362 (2019) 183–189.
doi: 10.1016/j.cej.2019.01.010
L. Chen, X. Peng, J. Liu, J. Li, F. Wu, Ind. Eng. Chem. Res. 51 (2012) 13632–13638.
doi: 10.1021/ie3020389
L. Chen, Y. Xue, T. Luo, F. Wu, Chem. Eng. J. 403 (2021) 126278.
doi: 10.1016/j.cej.2020.126278
Y. Zhang, J. Zhou, C. Li, S. Guo, G. Wang, Ind. Eng. Chem. Res. 51 (2012) 1158–1165.
doi: 10.1021/ie2014372
G. Lente, I. Fábián, J. Chem. Soc. Dalton Trans. 778 (2002) 778–784.
R.E. Huie, P. Neta, J. Phys. Chem. 89 (1985) 3918–3921.
doi: 10.1021/j100264a032
P. Neta, R.E. Huie, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 1027–1284.
doi: 10.1063/1.555808
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 513–886.
doi: 10.1063/1.555805
E. Hayon, A. Treinin, J. Wilf, J. Am. Chem. Soc. 94 (1972) 47–57.
doi: 10.1021/ja00756a009
L. Dogliotti, E. Hayon, J. Phys. Chem. 71 (1967) 2511–2516.
doi: 10.1021/j100867a019
W.J. McElroy, S.J. Waygood, J. Chem. Soc. Faraday Trans. 86 (1990) 2557–2564.
doi: 10.1039/ft9908602557
Y. Zuo, J. Hoigne, Environ. Sci. Technol. 26 (1992) 1014–1022.
doi: 10.1021/es00029a022
J. Ding, H. Nie, S. Wang, et al., Water Res. 189 (2021) 116605.
doi: 10.1016/j.watres.2020.116605
X. Lei, M. You, F. Pan, et al., Chin. Chem. Lett. 30 (2019) 2216–2220.
doi: 10.1016/j.cclet.2019.05.039
J. Hoigné, Quality and treatment of drinking Water Ⅱ, in: J. Hrubec (Ed.), The Handbook of Environmental Chemistry, Springer, Berlin & Heidelberg, 1998, pp. 83–141.
X. Yan, D. Yue, C. Guo, et al., Chin. Chem. Lett. 31 (2020) 1535–1539.
doi: 10.1016/j.cclet.2019.11.003
A.N.A. Heberle, M.E.P. Alves, S.W. da Silva, et al., Environ. Pollut. 249 (2019) 354–361.
doi: 10.1016/j.envpol.2019.03.057
M. Jarosiewicz, J. Michałowicz, B. Bukowska, Chemosphere 215 (2019) 404–412.
doi: 10.1016/j.chemosphere.2018.09.161
K. Lin, S. Zhou, X. Chen, et al., Chemosphere 138 (2015) 806–813.
doi: 10.1016/j.chemosphere.2015.08.014
M. Lv, X. Tang, Y. Zhao, et al., Sci. Total Environ. 723 (2020) 138086.
doi: 10.1016/j.scitotenv.2020.138086
Z. Wang, J. Wang, B. Xiong, et al., Environ. Sci. Technol. 54 (2020) 464–475.
doi: 10.1021/acs.est.9b04528
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
Xiaoyong ZHAI , Yao KOU , Pingru SU , Yu TANG . Lanthanide metal-organic framework with msw topology: Synthesis and the application in 2, 4, 6-trinitrophenol detection. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2087-2094. doi: 10.11862/CJIC.20250182
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Hongrui Zhang , Miaoying Cui , Yongjie Lv , Yongfang Rao , Yu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Chengxin Chen , Hongfei Shi , Xiaoyan Cai , Liang Mao , Zhe Chen . Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction. Acta Physico-Chimica Sinica, 2025, 41(12): 100155-0. doi: 10.1016/j.actphy.2025.100155
Yuwei Liu , Yihui Zhu , Weijian Duan , Yizhuo Yang , Haorui Tuo , Chunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
Zheng Liu , Yuqing Bian , Graham Dawson , Jiawei Zhu , Kai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272
Jiali Lei , Juan Wang , Wenhui Zhang , Guohong Wang , Zihui Liang , Jinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174
Zheng Li , Fangkun Li , Xijun Xu , Jun Zeng , Hangyu Zhang , Lei Xi , Yiwen Wu , Linwei Zhao , Jiahe Chen , Jun Liu , Yanping Huo , Shaomin Ji . A scalable approach to Na4Fe3(PO4)2P2O7@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110390-. doi: 10.1016/j.cclet.2024.110390
Binyang Qin , Mengqi Wang , Shimei Wu , Yining Li , Chilin Liu , Yufei Zhang , Haosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253