Degradation of florfenicol in a flow-through electro-Fenton system enhanced by wood-derived block carbon (WBC) cathode
-
* Corresponding author.
E-mail address: zhuoqf@dgut.edu.cn (Q. Zhuo).
Citation:
Li Tian, Qiongfang Zhuo, Jincheng Lu, Jingjing Liu, Xiaofeng Xu, Xiaolin You, Manman Xu, Bo Yang, Junfeng Niu. Degradation of florfenicol in a flow-through electro-Fenton system enhanced by wood-derived block carbon (WBC) cathode[J]. Chinese Chemical Letters,
;2022, 33(11): 4740-4745.
doi:
10.1016/j.cclet.2021.12.083
A. Özcan, Y. Şahin, A.S. Koparal, et al., Water Res. 42 (2008) 2889–2898.
H. Guo, Z. Xu, D. Wang, et al., Chemosphere 286 (2022) 131580.
O. Scialdone, S. Randazzo, A. Galia, et al., Electrochim. Acta 54 (2009) 1210–1217.
doi: 10.1016/j.electacta.2008.08.064
C. Barrera-Díaz, P. Cañizares, F. Fernandez, et al., J. Mex. Chem. Soc. 58 (2014) 256–275.
J. Wang, S. Wang, Chem. Eng. J. 401 (2020) 126158.
doi: 10.1016/j.cej.2020.126158
S. Garcia-Segura, J.D. Ocon, M.N. Chong, Process Saf. Environ. Prot. 113 (2018) 48–67.
doi: 10.1016/j.psep.2017.09.014
Z. Wei, H. Xu, Z. Lei, et al., Chin. Chem. Lett. 33 (2022) 920–925.
doi: 10.1016/j.cclet.2021.07.006
A. Babuponnusami, K. Muthukumar, Chem. Eng. J. 183 (2012) 1–9.
doi: 10.1016/j.cej.2011.12.010
M.A. Oturan, Curr. Opin. Solid State Mater. Sci. (2021) 100925.
Z. Wang, M. Liu, F. Xiao, et al., Chin. Chem. Lett. 33 (2022) 653–662.
doi: 10.1016/j.cclet.2021.07.044
X. Wang, P. Cao, K. Zhao, et al., Sep. Purif. Technol. 276 (2021) 119266.
doi: 10.1016/j.seppur.2021.119266
Y. Liu, F. Liu, N. Ding, et al., Chin. Chem. Lett. 31 (2020) 2539–2548.
doi: 10.1016/j.cclet.2020.03.011
A. Özcan, Y. Şahin, A. Savaş Koparal, et al., J. Electroanal. Chem. 616 (2008) 71–78.
doi: 10.1016/j.jelechem.2008.01.002
F. Yu, Y. Wang, H. Ma, J. Electroanal. Chem. 838 (2019) 57–65.
doi: 10.1016/j.jelechem.2019.02.036
E. Brillas, I. Sirés, M. Oturan, Chem. Rev. 109 (2009) 6570–6631.
doi: 10.1021/cr900136g
B.I. Waisi, J.T. Arena, N.E. Benes, et al., Microporous Mesoporous Mater. 296 (2020) 109966.
doi: 10.1016/j.micromeso.2019.109966
D. Kukkar, A. Rani, V. Kumar, et al., J. Colloid Interface Sci. 570 (2020) 411– 422.
doi: 10.1016/j.jcis.2020.03.006
H. Xu, X. Yin, M. Zhu, et al., Carbon 142 (2019) 346–353.
doi: 10.1016/j.carbon.2018.10.056
H. Zhu, W. Luo, P.N. Ciesielski, et al., Chem. Rev. 116 (2016) 12650.
doi: 10.1021/acs.chemrev.6b00576
T.E. Oladimeji, B.O. Odunoye, F.B. Elehinafe, et al., Heliyon 7 (2021) e05960.
doi: 10.1016/j.heliyon.2021.e05960
T. Wang, D. Zhang, K. Fang, et al., J. Environ. Chem. Eng. 9 (2021) 105184.
doi: 10.1016/j.jece.2021.105184
Q. Huang, J. Hu, M. Zhang, et al., Chin. Chem. Lett. 33 (2022) 1091–1094.
doi: 10.1016/j.cclet.2021.06.088
X. Zhao, W. Li, S. Zhang, et al., Mater. Chem. Phys. 155 (2015) 52–58.
M. Liu, M. Xu, Y. Xue, et al., ACS Appl. Mater. Interfaces 10 (2018) 31260– 31270.
F. Deng, H. Olvera-Vargas, O. Garcia-Rodriguez, et al., J. Hazard. Mater. 377 (2019) 249–258.
Y. Guo, S. Wu, H. Yu, et al., Water Sci. Technol. 80 (2019) 970–978.
B.P. Chaplin, Acc. Chem. Res. 52 (2019) 596–604.
D. Guo, Y. Liu, H. Ji, et al., Environ. Sci. Technol. 55 (2021) 4045–4053.
F. Liu, Y. Liu, Q. Yao, et al., Environ. Sci. Technol. 54 (2020) 5913–5921.
C. Wang, Y. Gu, S. Wu, et al., Environ. Sci. Technol. 54 (2020) 1920–1928.
H.M.A. Sharif, T. Li, N. Mahmood, et al., Carbon 182 (2021) 516–524.
Z. Lu, G. Chen, S. Siahrostami, et al., Nat. Catal. 1 (2018) 156–162.
F. Wang, J.Y. Cheong, J. Lee, et al., Adv. Funct. Mater. 31 (2021) 2101077.
Y. Liu, G. Gao, C.D. Vecitis, Acc. Chem. Res. 53 (2020) 2892–2902.
M.B.C. Contreras, F. Fourcade, A. Assadi, et al., Chemosphere 237 (2019) 124447.
S.O. Ganiyu, M. Zhou, C.A. Martínez-Huitle, Appl. Catal. B 235 (2018) 103– 129.
Y. Pang, H. Xie, Y. Sun, et al., J. Mater. Chem. A 8 (2020) 24996–25016.
P. Bautista, A.F. Mohedano, J.A. Casas, et al., J. Chem. Technol. Biotechnol. 83 (2008) 1323–1338.
L. Ma, M. Zhou, G. Ren, et al., Electrochim. Acta 200 (2016) 222–230.
Ö. Gökkuş, Y. Ş. Yıldız, Desalin. Water Treat. 57 (2016) 24934–24945.
E. Emmanuel, Y. Perrodin, G. Keck, et al., J. Hazard. Mater. 117 (2005) 1– 11.
L. Chen, T. Ji, L. Brisbin, et al., ACS Appl. Mater. Interfaces 7 (2015) 12230–12237.
C. Guo, D. Yue, S. Wang, et al., Chin. Chem. Lett. 31 (2020) 1978–1981.
Z. Yan, Z. Dai, W. Zheng, et al., Water Res. 205 (2021) 117678.
Xiaoyun Lei , Hanghang Zhao , Chao Bai , Longlong Geng , Xing Xu . Wood-derived catalysts for green and stable Fenton-like chemistry: From basic mechanisms to catalytic modules and future inspiration. Chinese Chemical Letters, 2025, 36(10): 111550-. doi: 10.1016/j.cclet.2025.111550
Runsheng Xu , Haotian Wu , Daoyuan Zu , Kui Yang , Xiangtong Kong , Jinxing Ma . Porous cathode enables continuous flow anodic oxidation for water purification: Performance and mechanisms. Chinese Chemical Letters, 2025, 36(8): 110517-. doi: 10.1016/j.cclet.2024.110517
Ze Wang , Hao Liang , Annan Liu , Xingchen Li , Lin Guan , Lei Li , Liang He , Andrew K. Whittaker , Bai Yang , Quan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765
Bin Zhao , Heping Luo , Jiaqing Liu , Sha Chen , Han Xu , Yu Liao , Xue Feng Lu , Yan Qing , Yiqiang Wu . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919-. doi: 10.1016/j.cclet.2024.109919
Chi Zhang , Ning Ding , Yuwei Pan , Lichun Fu , Ying Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Xinyu Wu , Jianfeng Lu , Zihao Zhu , Suijun Liu , Herui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Corrigendum to “Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics” [Chinese Chemical Letters 35 (2024) 109761]. Chinese Chemical Letters, 2025, 36(6): 110868-. doi: 10.1016/j.cclet.2025.110868
Jianjun Fang , Kunchen Xie , Yongli Song , Kangyi Zhang , Fei Xu , Xiaoze Shi , Ming Ren , Minzhi Zhan , Hai Lin , Luyi Yang , Shunning Li , Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504
Zeyin Chen , Jiaju Shi , Yusheng Zhou , Peng Zhang , Guodong Liang . Polymer microparticles with ultralong room-temperature phosphorescence for visual and quantitative detection of oxygen through phosphorescence image and lifetime analysis. Chinese Chemical Letters, 2025, 36(5): 110629-. doi: 10.1016/j.cclet.2024.110629
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Lin Zhang , Jianlong Li , Maoyuan Hu , Yao Xu , Xiaoli Xiong , Zhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123
Siyuan You , Rui Li , Haoyun Lu , Lifei Hou , Xing Xu , Yanan Shang . Modulation of the structures and properties of iron-carbon composites by different small molecular carbon sources for Fenton-like reactions. Chinese Chemical Letters, 2025, 36(9): 110955-. doi: 10.1016/j.cclet.2025.110955
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
Yanhua Peng , Xin Yu , Ting Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198
Ting Zhang , Baojing Huang , Hong Huang , Ailing Yan , Shiqiang Lu , Xufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198