Insight into the photoexcitation effect on the catalytic activation of H2 and C-H bonds on TiO2(110) surface
-
* Corresponding author.
E-mail address: hfwang@ecust.edu.cn (H.-F. Wang).
Citation:
Min Zhou, Hai-Feng Wang. Insight into the photoexcitation effect on the catalytic activation of H2 and C-H bonds on TiO2(110) surface[J]. Chinese Chemical Letters,
;2022, 33(10): 4705-4709.
doi:
10.1016/j.cclet.2021.12.074
R. Khorasani, P.E. Fleming, Comput. Theor. Chem. 1096 (2016) 89-93.
doi: 10.1016/j.comptc.2016.09.033
J. Berkowitz, G.B. Ellison, D. Gutman, J. Phys. Chem. 98 (1994) 2744-2765.
doi: 10.1021/j100062a009
B.B. Wayland, Polyhedron 7 (1988) 1545-1555.
doi: 10.1016/S0277-5387(00)81781-7
L. Meng, Z. Chen, Z. Ma, et al., Energy Environ. Sci. 11 (2018) 294-298.
doi: 10.1039/C7EE02951A
X. Li, W. Wang, F. Dong, et al., ACS Catal. 11 (2021) 4739-4769.
doi: 10.1021/acscatal.0c05354
M. Huš, D. Kopac, B. Likozar, J. Catal. 386 (2020) 126-138.
doi: 10.1016/j.jcat.2020.03.037
J.L. Gland, G.B. Fisher, E.B. Kollin, J. Catal. 77 (1982) 263-278.
doi: 10.1016/0021-9517(82)90167-1
G.E. Gdowski, R.J. Madix, Surf. Sci. 119 (1982) 184-206.
doi: 10.1016/0039-6028(82)90292-8
R. Van Lent, S.V. Auras, K. Cao, et al., Science 363 (2019) 155-157.
doi: 10.1126/science.aau6716
X. Qi, Y. Li, R. Bai, et al., Acc. Chem. Res. 50 (2017) 2799-2808.
doi: 10.1021/acs.accounts.7b00400
S.R. Neufeldt, G. JiméNez-Osés, J.R. Huckins, et al., J. Am. Chem. Soc. 137 (2015) 9843-9854.
doi: 10.1021/jacs.5b03535
J.C. Lewis, R.G. Bergman, J.A. Ellman, Acc. Chem. Res. 41 (2008) 1013-1025.
doi: 10.1021/ar800042p
M. Wijzenbroek, D. Helstone, J. Meyer, et al., J. Chem. Phys. 145 (2016) 144701.
doi: 10.1063/1.4964486
Q. Wu, L. Zhou, G.C. Schatz, et al., J. Am. Chem. Soc. 142 (2020) 13090-13101.
doi: 10.1021/jacs.0c04491
S. Mukherjee, F. Libisch, N. Large, et al., Nano Lett. 13 (2013) 240-247.
doi: 10.1021/nl303940z
T. Engel, H. Kuipers, Surf. Sci. 90 (1979) 181-196.
doi: 10.1016/0039-6028(79)90018-9
D.F. Padowitz, S.J. Sibener, Surf. Sci. 254 (1991) 125-143.
doi: 10.1016/0039-6028(91)90645-9
Y. Sun, S. Zhang, W. Zhang, et al., Chin. J. Chem. Phys. 31 (2018) 485-491.
doi: 10.1063/1674-0068/31/cjcp1805120
F. Zaera, D. Chrysostomou, Surf. Sci. 457 (2000) 89-108.
doi: 10.1016/S0039-6028(00)00337-X
M. L. Yang, Y.A. Zhu, C. Fan, et al., Phys. Chem. Chem. Phys. 13 (2011) 3257-3267.
doi: 10.1039/c0cp00341g
Y. Chen, D.G. Vlachos, J. Phys. Chem. C 114 (2010) 4973-4982.
W. Zhang, M. Pu, M. Lei, Langmuir 36 (2020) 5891-5901.
doi: 10.1021/acs.langmuir.0c00644
G. Righi, R. Magri, A. Selloni, J. Phys. Chem. C 123 (2019) 9875-9883.
doi: 10.1021/acs.jpcc.9b00609
L. Brugnoli, A. Pedone, M.C. Menziani, et al., J. Phys. Chem. C 123 (2019) 25668-25679.
doi: 10.1021/acs.jpcc.9b06805
Y. Chen, P. Hu, M.H. Lee, et al., Surf. Sci. 602 (2008) 1736-1741.
doi: 10.1016/j.susc.2008.02.036
Y. Chen, J. Cheng, P. Hu, et al., Surf. Sci. 602 (2008) 2828-2834.
doi: 10.1016/j.susc.2008.06.033
M.V. Bossche, H. Gronbeck, J. Am. Chem. Soc. 137 (2015) 12035-12044.
doi: 10.1021/jacs.5b06069
F. Zasada, J. Janas, W. Piskorz, et al., ACS Catal. 7 (2017) 2853-2867.
doi: 10.1021/acscatal.6b03139
Z. Zhu, W. Guo, Y. Zhang, et al., Carbon Energy 3 (2021) 519-540.
doi: 10.1002/cey2.127
T. Whittaker, K.B.S. Kumar, C. Peterson, et al., J. Am. Chem. Soc. 140 (2018) 16469-16487.
doi: 10.1021/jacs.8b04991
K. Sun, M. Kohyama, S. Tanaka, et al., J. Phys. Chem. C 118 (2014) 1611-1617.
doi: 10.1021/jp4099254
S. Mukherjee, L. Zhou, A.M. Goodman, et al., J. Am. Chem. Soc. 136 (2014) 64-67.
doi: 10.1021/ja411017b
N. Yodsin, C. Rungnim, S. Tungkamani, et al., J. Phys. Chem. C 124 (2019) 1941-1949.
Y. Chen, S. Ji, W. Sun, et al., Angew. Chem. Int. Ed. 132 (2020) 1295-1301.
doi: 10.1002/ange.201912043
H. She, H. Zhou, L. Li, et al., ACS Sustain. Chem. Eng. 6 (2018) 11939-11948.
doi: 10.1021/acssuschemeng.8b02217
T. Yan, Y. Wang, Y. Cao, et al., Appl. Catal. A: Gen. 630 (2022) 118457.
doi: 10.1016/j.apcata.2021.118457
C.F. Lien, M.T. Chen, Y.F. Lin, et al., J. Chin. Chem. Soc. 51 (2004) 37-42.
doi: 10.1002/jccs.200400007
H. Song, X. Meng, S. Wang, et al., J. Am. Chem. Soc. 141 (2019) 20507-20515.
doi: 10.1021/jacs.9b11440
X. Cao, T. Han, Q. Peng, et al., ChemComm 56 (2020) 13918-13932.
P.V.L. Reddy, K.H. Kim, H. Song, Renew. Sustain. Energy Rev. 24 (2013) 578-585.
doi: 10.1016/j.rser.2013.03.035
N. Feng, H. Lin, H. Song, et al., Nat. Commun. 12 (2021) 4652.
doi: 10.1038/s41467-021-24912-0
R. Sun, C. He, L. Fu, et al., Chin. Chem. Lett. 33 (2022) 527-532.
doi: 10.1016/j.cclet.2021.05.072
L. Fu, R. Wang, C. Zhao, et al., Chem. Eng. J. 414 (2021) 128857.
doi: 10.1016/j.cej.2021.128857
J. Yu, C. He, C. Pu, et al., Chin. Chem. Lett. 32 (2021) 3149-3154.
doi: 10.1016/j.cclet.2021.02.046
Y. Zhao, W. Gao, S. Li, et al., Joule 3 (2019) 920-937.
doi: 10.1016/j.joule.2019.03.003
Y. Tian, L. Piao, X. Chen, Green Chem. 23 (2021) 3526-3541.
doi: 10.1039/D1GC00658D
W.B. Jiang, J.X. Low, et al., J. Univ. Sci. Technol. China 50 (2020) 1361.
M. Harb, G. Jeantelot, J.M. Basset, J. Phys. Chem. C 123 (2019) 28210-28218.
doi: 10.1021/acs.jpcc.9b08145
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
doi: 10.1103/PhysRevB.54.11169
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
doi: 10.1016/0927-0256(96)00008-0
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, Phys. Rev. Lett. 100 (2008) 136406.
doi: 10.1103/PhysRevLett.100.136406
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
doi: 10.1103/PhysRevLett.77.3865
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
H. Yuan, H. Yang, P. Hu, et al., ACS Catal. 11 (2021) 6835-6845.
doi: 10.1021/acscatal.1c01050
H.F. Wang, D. Wang, X. Liu, et al., ACS Catal. 6 (2016) 5393-5398.
doi: 10.1021/acscatal.6b00764
H.F. Wang, R. Kavanagh, Y.L. Guo, et al., Angew. Chem. Int. Ed. 51 (2012) 6657-6661.
doi: 10.1002/anie.201108981
S. Grimme, J. Comput. Chem. 27 (2006) 1787-1799.
doi: 10.1002/jcc.20495
S. Grimme, J. Antony, S. Ehrlich, et al., J. Chem. Phys. 132 (2010) 154104.
doi: 10.1063/1.3382344
M. Setvin, C. Franchini, X. Hao, et al., Phys. Rev. Lett. 113 (2014) 086402.
doi: 10.1103/PhysRevLett.113.086402
D. Wang, H.F. Wang, P. Hu, Phys. Chem. Chem. Phys. 17 (2015) 1549-1555.
doi: 10.1039/C4CP04159C
J. Zhang, C. Peng, H. Wang, et al., ACS Catal. 7 (2017) 2374-2380.
doi: 10.1021/acscatal.6b03348
D. Wang, T. Sheng, J. Chen, et al., Nat. Catal. 1 (2018) 291-299.
doi: 10.1038/s41929-018-0055-z
H. Yuan, N. Sun, J. Chen, et al., ACS Catal. 8 (2018) 9269-9279.
doi: 10.1021/acscatal.8b02114
H. Yuan, J. Chen, H. Wang, et al., ACS Catal. 8 (2018) 10864-10870.
doi: 10.1021/acscatal.8b03045
G. Hu, Z. Wu, D.E. Jiang, J. Phys. Chem. C 122 (2018) 20323-20328.
doi: 10.1021/acs.jpcc.8b05251
J. Zhang, P. Zhou, J. Liu, et al., Phys. Chem. Chem. Phys. 16 (2014) 20382-20386.
doi: 10.1039/C4CP02201G
S. Wu, L. Wang, J. Zhang, J. Photochem. Photobiol. C Photochem. Rev. 46 (2021) 100400.
doi: 10.1016/j.jphotochemrev.2020.100400
H. Sheng, Q. Li, W. Ma, et al., Appl. Catal. B 138 (2013) 212-218.
B.D. Dunnington, J.R. Schmidt, J. Chem. Theory Comput. 8 (2012) 1902-1911.
doi: 10.1021/ct300002t
M. Zhou, H.F. Wang, JACS Au. 2 (2022) 188-196.
doi: 10.1021/jacsau.1c00466
P.J. Linstrom, W.G. Mallard, Chem. Eng. 46 (2001) 1059-1063.
P. Pässler, W. Hefner, K. Buckl, et al., Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
K.M. Ervin, S. Gronert, S.E. Barlow, et al., J. Am. Chem. Soc. 112 (1990) 5750-5759.
doi: 10.1021/ja00171a013
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Qiuyun Li , Yannan Zhu , Yining Wang , Gang Qi , Wen-Juan Hao , Kelu Yan , Bo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457