Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping
-
* Corresponding authors.
E-mail addresses: cyu2020@hust.edu.cn (C. Yu), xiejia@hust.edu.cn (J. Xie).
Citation:
Shuai Chen, Chuang Yu, Shaoqing Chen, Linfeng Peng, Cong Liao, Chaochao Wei, Zhongkai Wu, Shijie Cheng, Jia Xie. Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping[J]. Chinese Chemical Letters,
;2022, 33(10): 4635-4639.
doi:
10.1016/j.cclet.2021.12.048
J. Janek, W.G. Zeier, Nat. Energy. 1 (2016) 16141.
doi: 10.1038/nenergy.2016.141
A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2 (2017) 16103.
doi: 10.1038/natrevmats.2016.103
C.Z. Ke, F. Liu, Z.M. Zheng, et al., Rare Met. 40 (2021) 1347–1356.
doi: 10.1007/s12598-021-01716-1
Q. Yu, K. Jiang, C. Yu, et al., Chin. Chem. Lett. 32 (2021) 2659–2678.
doi: 10.1016/j.cclet.2021.03.032
J.C. Bachman, S. Muy, A. Grimaud, et al., Chem. Rev. 116 (2016) 140–162.
doi: 10.1021/acs.chemrev.5b00563
J. Park, J.Y. Kim, D.O. Shid, et al., Chem. Eng. J. 391 (2020) 123528.
doi: 10.1016/j.cej.2019.123528
N. Kamayan, K. Homma, Y. Yamakawa, et al., Nat. Mater. 10 (2011) 682–686.
doi: 10.1038/nmat3066
Z.Y. He, Z.Q. Zhang, M. Yu, et al., Rare Met. 41 (2022) 798–805.
doi: 10.1007/s12598-021-01827-9
R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Ed. 46 (2007) 7778–7781.
doi: 10.1002/anie.200701144
M. Weiss, F.J. Simon, M.R. Busche, et al., Energy Rev. 3 (2020) 221–238.
doi: 10.1007/s41918-020-00062-7
Z. Liu, S. Ma, J. Liu, et al., ACS Energy Lett. 6 (2020) 298–304.
X. Li, J. Liang, K.R. Adair, et al., Nano Lett. 20 (2020) 4384–4392.
doi: 10.1021/acs.nanolett.0c01156
F. Han, T. Gao, Y. Zhu, et al., Adv. Mater. 27 (2015) 3473–3483.
doi: 10.1002/adma.201500180
B.R. Shin, Y.J. Nam, D.Y. Oh, et al., Electrochim. Acta 146 (2014) 395–402.
doi: 10.1016/j.electacta.2014.08.139
M. Kotobuki, H. Mumakata, K. Kanamura, et al., J. Electrochem. Soc. 157 (2010) A1076.
doi: 10.1149/1.3474232
X. Li, J. Liang, X. Yang, et al., Energy Environ. Sci. 13 (2020) 1429–1461.
doi: 10.1039/c9ee03828k
H.T. Ren, Z.Q. Zhang, J.Z. Zhang, et al., Rare Met. 41 (2021) 106–114.
doi: 10.1109/icaa53760.2021.00027
S. Lou, F. Zhang, C. Fu, et al., Mater. Res. Bull. 33 (2021) 2000721.
doi: 10.1002/adma.202000721
L. Hanebali, T. Machej, C. Cros, et al., Mater. Res. Bull. 16 (1981) 887–901.
doi: 10.1016/0025-5408(81)90165-3
T. Asano, A. Sakai, S. Ouchi, et al., Adv. Mater. 30 (2018) e1803075.
doi: 10.1002/adma.201803075
X. Li, J. Liang, J. Luo, et al., Energy Environ. Sci. 12 (2019) 2665–2671.
doi: 10.1039/c9ee02311a
X. Li, J. Liang, N. Chen, et al., Angew. Chem. Int. Ed. 58 (2019) 16427–16432.
doi: 10.1002/anie.201909805
J. Liang, X. Li, S. Wang, et al., J. Am. Chem. Soc. 142 (2020) 7012–7022.
doi: 10.1021/jacs.0c00134
K. Yamada, K. Kumano, T. Okuda, Solid State Ion. 177 (2006) 1691–1695.
doi: 10.1016/j.ssi.2006.06.026
R. Schlem, S. Muy, N. Prinz, et al., Adv. Energy Mater. 10 (2020) 1903719.
doi: 10.1002/aenm.201903719
H. Kwak, D. Han, J. Lyoo, et al., Adv. Energy Mater. 11 (2021) 2003190.
doi: 10.1002/aenm.202003190
K. Wang, Q. Ren, Z. Gu, et al., Nat. Commun. 12 (2021) 4410.
doi: 10.1038/s41467-021-24697-2
K. Kim, D. Park, H.G. Jung, et al., Chem. Mater. 33 (2021) 3669–3677.
doi: 10.1021/acs.chemmater.1c00555
L. Peng, C. Yu, Z. Zhang, et al., Chem. Eng. J. 430 (2022) 132896.
doi: 10.1016/j.cej.2021.132896
J. Liang, X. Li, K.R. Adair, et al., Acc. Chem. Res. 54 (2021) 1023–1033.
doi: 10.1021/acs.accounts.0c00762
X. Liang, Q. Pang, I.R. Kochetkov, et al., Nat Energy 2 (2017) 17119.
doi: 10.1038/nenergy.2017.119
L. Peng, H. Ren, J. Zhang, et al., Energy Stor. Mater. 43 (2021) 53–61.
doi: 10.1016/j.ensm.2021.08.028
Han Yan , Jingming Yao , Zhangran Ye , Qiaoquan Lin , Ziqi Zhang , Shulin Li , Dawei Song , Zhenyu Wang , Chuang Yu , Long Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Jingyu Shi , Xiaofeng Wu , Yutong Chen , Yi Zhang , Xiangyan Hou , Ruike Lv , Junwei Liu , Mengpei Jiang , Keke Huang , Shouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938
Mufan Cao , Long Pan , Yaping Wang , Xianwei Sui , Xiong Xiong Liu , Shengfa Feng , Pengcheng Yuan , Min Gao , Jiacheng Liu , Song-Zhu Kure-Chu , Takehiko Hihara , Yang Zhou , Zheng-Ming Sun . Mechanical-durable and humidity-resistant dry-processed halide solid-state electrolyte films for all-solid-state battery. Chinese Chemical Letters, 2025, 36(6): 110391-. doi: 10.1016/j.cclet.2024.110391
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
Ziling Jiang , Chen Liu , Jie Yang , Xia Li , Chaochao Wei , Qiyue Luo , Zhongkai Wu , Lin Li , Liping Li , Shijie Cheng , Chuang Yu . Designing F-doped Li3InCl6 electrolyte with enhanced stability for all-solid-state lithium batteries in a wide voltage window. Chinese Chemical Letters, 2025, 36(6): 109741-. doi: 10.1016/j.cclet.2024.109741
Jing Guo . Stacking solid-state electrolyte and aluminum pellets for anode-free solid-state batteries. Chinese Chemical Letters, 2025, 36(5): 110764-. doi: 10.1016/j.cclet.2024.110764
Qiao Wang , Ziling Jiang , Chuang Yu , Liping Li , Guangshe Li . Research progress of inorganic sodium ion conductors for solid-state batteries. Chinese Chemical Letters, 2025, 36(6): 110006-. doi: 10.1016/j.cclet.2024.110006
Sheng Zhao , Junjie Lu , Bifu Sheng , Siying Zhang , Hao Li , Jizhang Chen , Xiang Han . High-performance room temperature solid-state lithium battery enabled by PP-PVDF multilayer composite electrolyte. Chinese Chemical Letters, 2025, 36(6): 110008-. doi: 10.1016/j.cclet.2024.110008
Jie Chen , Hannan Chen , Bingbing Tian . Enhancing moisture and electrochemical stability of the Li5.7PS4.7Cl1.3 electrolyte by boron nitride coating for all-solid-state lithium metal batteries. Chinese Chemical Letters, 2025, 36(7): 109775-. doi: 10.1016/j.cclet.2024.109775
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Zhangran Ye , Zhixuan Yu , Jingming Yao , Lei Deng , Yunna Guo , Hantao Cui , Chongchong Ma , Chao Tai , Liqiang Zhang , Lingyun Zhu , Peng Jia . An ionically conductive and compressible sulfochloride solid-state electrolyte for stable all-solid-state lithium-based batteries. Chinese Chemical Letters, 2025, 36(8): 110272-. doi: 10.1016/j.cclet.2024.110272
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108