Bimetallic two-dimensional materials for electrocatalytic oxygen evolution
-
* Corresponding author.
E-mail address: hecx@szu.edu.cn (C. He).
Citation:
Xiaojie Li, Qi Hu, Hengpan Yang, Tao Ma, Xiaoyan Chai, Chuanxin He. Bimetallic two-dimensional materials for electrocatalytic oxygen evolution[J]. Chinese Chemical Letters,
;2022, 33(8): 3657-3671.
doi:
10.1016/j.cclet.2021.12.001
Q. Hu, Z. Wang, X. Huang, et al., Energy Environ. Sci. 13 (2020) 5097–5103.
doi: 10.1039/d0ee02815k
Y. Lei, T. Xu, S. Ye, et al., Appl. Catal. B Environ. 285 (2021) 119809.
doi: 10.1016/j.apcatb.2020.119809
Q. Hu, Z. Wang, X. Huang, et al., Appl. Catal. B Environ. 286 (2021) 119920.
doi: 10.1016/j.apcatb.2021.119920
H. Zhang, W. Tian, L. Zhou, et al., Appl. Catal. B Environ. 223 (2018) 2–9.
doi: 10.53388/life2018-0711-002
H. Zhang, W. Tian, X. Guo, et al., ACS Appl. Mater. Interfaces 8 (2016) 35203–35212.
doi: 10.1021/acsami.6b10918
F. Cao, G. Pan, Y. Zhang, X. Xia, Chin. Chem. Lett. 31 (2020) 2230–2234.
doi: 10.1016/j.cclet.2020.01.037
A.S. Huang, G.H. Zhao, H.X. Li, Chin. Chem. Lett. 18 (2007) 997–1000.
doi: 10.1016/j.cclet.2007.05.034
X. Li, H. Zhang, Y. Liu, et al., Chem. Eng. J. 390 (2020) 124634.
doi: 10.1016/j.cej.2020.124634
X. Li, S. Zhao, X. Duan, et al., Appl. Catal. B Environ. 283 (2021) 119660.
doi: 10.1016/j.apcatb.2020.119660
Y. Liu, X. Xu, J. Zhang, et al., Appl. Catal. B Environ. 239 (2018) 334–344.
doi: 10.1016/j.apcatb.2018.08.028
J. Zhang, Y. Li, X. Zhao, et al., ACS Nano 14 (2020) 17505–17514.
doi: 10.1021/acsnano.0c07934
Q. Hu, G. Li, X. Huang, et al., J. Mater. Chem A 7 (2019) 19531–19538.
doi: 10.1039/c9ta06244k
X. Zhao, J. Meng, Z. Yan, F. Cheng, J. Chen, Chin. Chem. Lett. 30 (2019) 319–323.
doi: 10.1016/j.cclet.2018.03.035
H. Wang, S. Zhu, J. Deng, et al., Chin. Chem. Lett. 32 (2021) 291–298.
doi: 10.1016/j.cclet.2020.02.018
Q. Hu, X. Huang, Z. Wang, et al., J. Mater. Chem. A 8 (2020) 2140–2146.
doi: 10.1039/c9ta12713e
H. Zhang, W. Tian, Y. Li, et al., J. Mater. Chem. A 6 (2018) 24149–24156.
doi: 10.1039/c8ta06921b
H. Zhang, W. Tian, X. Duan, et al., Adv. Mater. 32 (2020) 1904037.
doi: 10.1002/adma.201904037
H. Zhang, W. Tian, X. Duan, et al., Nanoscale 12 (2020) 6937–6952.
doi: 10.1039/d0nr00652a
P. Han, T. Tan, F. Wu, et al., Chin. Chem. Lett. 31 (2020) 2469–2472.
doi: 10.1016/j.cclet.2020.03.009
C. Wang, L. Jin, H. Shang, et al., Chin. Chem. Lett. 32 (2021) 2108–2116.
doi: 10.1016/j.cclet.2020.11.051
Q. Hu, X. Liu, B. Zhu, et al., Nano Energy 50 (2018) 212–219.
doi: 10.1016/j.nanoen.2018.05.033
B. Zhu, Q. Hu, X. Liu, et al., Chem. Commun. 54 (2018) 10187–10190.
doi: 10.1039/C8CC06270F
Q. Hu, G. Li, Z. Han, et al., J. Mater. Chem. A 7 (2019) 14380–14390.
doi: 10.1039/c9ta04163j
Q. Hu, G. Li, Z. Han, et al., Adv. Energy Mater. 9 (2019) 1901130.
doi: 10.1002/aenm.201901130
X. Li, C. Wang, Y.Y. Liu, et al., Chin. Chem. Lett. 32 (2021) 2239–2242.
doi: 10.1016/j.cclet.2020.12.037
L. Jin, H. Pang, Chin. Chem. Lett. 31 (2020) 2300–2304.
doi: 10.1016/j.cclet.2020.03.041
Z. Cao, Z. Wang, F. Li, et al., Electrochim. Acta 332 (2020) 135464.
doi: 10.1016/j.electacta.2019.135464
H. Yang, X. Wang, Q. Hu, et al., Small Methods 4 (2020) 1900826.
doi: 10.1002/smtd.201900826
H. Yang, Q. Lin, Y. Wu, et al., Nano Energy 70 (2020) 104454.
doi: 10.1016/j.nanoen.2020.104454
H. Yang, X. Yu, J. Shao, et al., J. Mater. Chem. A 8 (2020) 15675–15680.
doi: 10.1039/d0ta03770b
G. Li, L. Pei, Y. Wu, et al., J. Mater. Chem. A 7 (2019) 11223–11233.
doi: 10.1039/c9ta02256b
H. Luo, W.J. Jiang, S. Niu, et al., Small 16 (2020) 2001171.
doi: 10.1002/smll.202001171
Y. Guan, N. Li, Y. Li, et al., Nanoscale 12 (2020) 14259–14266.
doi: 10.1039/d0nr03495a
Y. Sun, Y. Guan, X. Wu, et al., Nanoscale 13 (2021) 3227–3236.
doi: 10.1039/d0nr07892a
L. Zeng, L. Yang, J. Lu, et al., Chin. Chem. Lett. 29 (2018) 1875–1878.
doi: 10.1016/j.cclet.2018.10.026
Y. Li, Q. Guo, Y. Jiang, et al., Chin. Chem. Lett. 32 (2021) 755–760.
doi: 10.1016/j.cclet.2020.05.012
X. Li, Y. Wang, J. Wang, et al., Adv. Mater. 32 (2020) 2003414.
doi: 10.1002/adma.202003414
L. Zhang, C. Lu, F. Ye, et al., Adv. Mater. 33 (2021) 2007523.
doi: 10.1002/adma.202007523
L. Zhang, W. Cai, N. Bao, Adv. Mater. 33 (2021) 2100745.
doi: 10.1002/adma.202100745
H. Zhang, C. Li, Q. Lu, M.J. Cheng, W.A. Goddard, J. Am. Chem. Soc. 143 (2021) 3967–3974.
doi: 10.1021/jacs.1c00377
Z. Chen, R. Zheng, M. Graś, et al., Appl. Catal. B Environ. 288 (2021) 120037.
doi: 10.1016/j.apcatb.2021.120037
H. Qiao, H. Liu, Z. Huang, et al., Adv. Energy Mater. 10 (2020) 2002424.
doi: 10.1002/aenm.202002424
R. Kötz, H. Neff, S. Stucki, J. Electrochem. Soc. 131 (1984) 72–77.
doi: 10.1149/1.2115548
R. Kötz, H.J. Lewerenz, S. Stucki, J. Electrochem. Soc. 130 (1983) 825–829.
doi: 10.1149/1.2119829
L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, Adv. Energy Mater. 9 (2019) 1803358.
doi: 10.1002/aenm.201803358
S. Cao, J. Qi, F. Lei, Chem. Eng. J. 413 (2021) 127540.
doi: 10.1016/j.cej.2020.127540
J. Shan, C. Ye, S. Chen, et al., J. Am. Chem. Soc. 143 (2021) 5201–5211.
doi: 10.1021/jacs.1c01525
C. Xuan, W. Lei, J. Wang, et al., J. Mater. Chem. A 7 (2019) 12350–12357.
doi: 10.1039/c9ta02761k
Y. Zhang, Y. Wang, H. Jiang, M. Huang, Small 16 (2020) 2002550.
doi: 10.1002/smll.202002550
Y. Zuo, D. Rao, S. Ma, et al., ACS Nano 13 (2019) 11469–11476.
doi: 10.1021/acsnano.9b04956
Y. Guo, C. Zhang, J. Zhang, et al., ACS Sustain. Chem. Eng. 9 (2021) 2047–2056.
doi: 10.1021/acssuschemeng.0c06969
C. Liao, B. Yang, N. Zhang, et al., Adv. Funct. Mater. 29 (2019) 1904020.
doi: 10.1002/adfm.201904020
T. Wu, S. Zhang, K. Bu, et al., J. Mater. Chem. A 7 (2019) 22063–22069.
doi: 10.1039/c9ta07962a
P. He, X.Y. Yu, X.W.D. Lou, Angew. Chem. Int. Ed. 56 (2017) 3897–3900.
doi: 10.1002/anie.201612635
Y. Wang, L. Sun, L. Lu, et al., J. Mater. Chem. A 9 (2021) 3482–3491.
doi: 10.1039/d0ta10835a
M. Zhou, Q. Weng, X. Zhang, et al., J. Mater. Chem. A 5 (2017) 4335–4342.
doi: 10.1039/C6TA09366C
L. Yi, Y. Niu, B. Feng, M. Zhao, W. Hu, J. Mater. Chem. A 9 (2021) 4213–4220.
doi: 10.1039/d0ta09617b
S. Hao, G. Zheng, S. Gao, et al., ACS Sustain. Chem. Eng. 7 (2019) 14361–14367.
doi: 10.1021/acssuschemeng.9b03830
H. Meng, W. Xi, Z. Ren, et al., Appl. Catal. B Environ. 284 (2021) 119707.
doi: 10.1016/j.apcatb.2020.119707
Y. Feng, H. Han, K.M. Kim, S. Dutta, T. Song, J. Catal. 369 (2019) 168–174.
doi: 10.1016/j.jcat.2018.11.005
X. Gu, Z. Liu, H. Liu, C. Pei, L. Feng, Chem. Eng. J. 403 (2021) 126371.
doi: 10.1016/j.cej.2020.126371
R. Gao, D. Yan, Adv. Energy Mater. 10 (2020) 1900954.
doi: 10.1002/aenm.201900954
Y. Xue, Y. Wang, Z. Pan, K. Sayama, Angew. Chem. Int. Ed. 60 (2021) 10469–10480.
doi: 10.1002/anie.202011215
S. Li, Y. Gao, N. Li, et al., Energy Environ. Sci. 14 (2021) 1897–1927.
doi: 10.1039/d0ee03697h
M. Alhabeb, K. Maleski, B. Anasori, et al., Chem. Mater. 29 (2017) 7633–7644.
doi: 10.1021/acs.chemmater.7b02847
D. Voiry, H. Yamaguchi, J. Li, et al., Nat. Mater. 12 (2013) 850–855.
doi: 10.1038/nmat3700
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6 (2011) 147–150.
doi: 10.1038/nnano.2010.279
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306 (2004) 666–669.
doi: 10.1126/science.1102896
A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183–191.
doi: 10.1038/nmat1849
L. Zhao, B. Dong, S. Li, et al., ACS Nano 11 (2017) 5800–5807.
doi: 10.1021/acsnano.7b01409
S. Chen, Z. Kang, X. Hu, et al., Adv. Mater. 29 (2017) 1701687.
doi: 10.1002/adma.201701687
Q. Liang, L. Zhong, C. Du, et al., Nano Energy 47 (2018) 257–265.
doi: 10.1016/j.nanoen.2018.02.048
Y. Xu, B. Li, S. Zheng, et al., J. Mater. Chem. A 6 (2018) 22070–22076.
doi: 10.1039/c8ta03128b
T. Wen, M. Liu, S. Chen, et al., Small 16 (2020) 1907669.
doi: 10.1002/smll.201907669
S. Chandrasekaran, D. Ma, Y. Ge, et al., Nano Energy 77 (2020) 105080.
doi: 10.1016/j.nanoen.2020.105080
F. Yang, X. Chen, Z. Li, et al., ACS Appl. Energy Mater. 3 (2020) 3577–3585.
doi: 10.1021/acsaem.0c00080
J. Yu, F. Yu, M.F. Yuen, C. Wang, J. Mater. Chem. A 9 (2021) 9389–9430.
doi: 10.1039/d0ta11910e
L. Wang, J. Geng, W. Wang, et al., Nano Res. 8 (2015) 3815–3822.
doi: 10.1007/s12274-015-0881-0
X. Li, D.D. Ma, C. Cao, et al., Small 15 (2019) 1902218.
doi: 10.1002/smll.201902218
J. Du, C. Li, X. Wang, X. Shi, H.P. Liang, ACS Appl. Mater. Interfaces 11 (2019) 25958–25966. f3.
doi: 10.1021/acsami.9b07164
D. Tang, R. Zhao, C. Shen, et al., Electrochim. Acta 324 (2019) 134888.
doi: 10.1016/j.electacta.2019.134888
B.N. Khiarak, M. Hasanzadeh, M. Mojaddami, H. Shahriyar Far, A. Simchi, Chem. Commun. 56 (2020) 3135–3138.
doi: 10.1039/c9cc09908e
Z. Gao, Z. Yu, Y. Huang, et al., J. Mater. Chem. A 8 (2020) 5907–5912.
doi: 10.1039/c9ta14023a
Y. Li, Z. Wang, J. Hu, et al., Adv. Funct. Mater. 30 (2020) 1910498.
doi: 10.1002/adfm.201910498
D. Xiong, M. Gu, C. Chen, et al., Chem. Eng. J. 404 (2021) 127111.
doi: 10.1016/j.cej.2020.127111
W. Zhang, K. Zhou, Small 13 (2017) 1700806.
doi: 10.1002/smll.201700806
Y. Zhou, J. Li, X. Gao, W. Chu, G. Gao, J. Mater. Chem. A 9 (2021) 9979–9999.
doi: 10.1039/d1ta00154j
X. Lu, H. Xue, H. Gong, et al., Nano Micro Lett. 12 (2020) 86.
doi: 10.1007/s40820-020-00421-5
J. Zhang, C. Si, T. Kou, J. Wang, Z. Zhang, Sustain. Energy Fuels 4 (2020) 2625–2637.
doi: 10.1039/c9se01312a
J. Lei, M. Zeng, L. Fu, Chem. Res. Chin. Univ. 36 (2020) 504–510.
doi: 10.1007/s40242-020-0190-3
W. Huang, J. Tang, F. Diao, et al., ChemElectroChem 7 (2020) 4695–4712.
doi: 10.1002/celc.202001137
S. Zhao, Y. Wang, J. Dong, et al., Nat. Energy 1 (2016) 16184.
doi: 10.1038/nenergy.2016.184
J. Li, P. Liu, J. Mao, J. Yan, W. Song, J. Mater. Chem. A 9 (2021) 1623–1629.
doi: 10.1039/d0ta10870g
Y. Wang, M. Qiao, Y. Li, S. Wang, Small 14 (2018) 1800136.
doi: 10.1002/smll.201800136
L. Zhuang, Y. Jia, T. He, et al., Nano Res. 11 (2018) 3509–3518.
doi: 10.1007/s12274-018-2050-8
S.H. Ye, Z.X. Shi, J.X. Feng, Y.X. Tong, G.R. Li, Angew. Chemie Int. Ed 57 (2018) 2672–2676.
doi: 10.1002/anie.201712549
X. Hu, S. Zhang, J. Sun, et al., Nano Energy 56 (2019) 109–117.
doi: 10.1016/j.nanoen.2018.11.047
M. Rosa, V.C. Bassetto, H.H. Girault, A. Lesch, V. Esposito, ACS Appl. Energy Mater. 3 (2020) 1017–1026.
doi: 10.1021/acsaem.9b02055
F. Sun, G. Wang, Y. Ding, et al., Adv. Energy Mater. 8 (2018) 1800584.
doi: 10.1002/aenm.201800584
C. Pan, Z. Liu, M. Huang, Appl. Surf. Sci. 529 (2020) 147201.
doi: 10.1016/j.apsusc.2020.147201
F. He, X. Deng, M. Chen, Fuel 186 (2016) 605–612.
doi: 10.1016/j.fuel.2016.08.105
Z. Hu, X. Xiao, H. Jin, et al., Nat. Commun. 8 (2017) 15630.
doi: 10.1038/ncomms15630
J. Yu, Q. Wang, D. O'Hare, L. Sun. Chem. Soc. Rev. 46 (2017) 5950–5974.
doi: 10.1039/C7CS00318H
Y. Li, W. Zhu, X. Fu, et al., Inorg. Chem. 58 (2019) 6231–6237.
doi: 10.1021/acs.inorgchem.9b00463
R.L. Peng, J.L. Li, X.N. Wang, et al., Inorg. Chem. Front. 7 (2020) 4661–4668.
doi: 10.1039/d0qi00812e
Q. Zhou, Y. Chen, G. Zhao, et al., ACS Catal. 8 (2018) 5382–5390.
doi: 10.1021/acscatal.8b01332
L.J. Wang, H. Deng, H. Furukawa, et al., Inorg. Chem. 53 (2014) 5881–5883.
doi: 10.1021/ic500434a
J. Qian, F. Sun, L. Qin, Mater. Lett. 82 (2012) 220–223.
doi: 10.1016/j.matlet.2012.05.077
J. Li, S. Cheng, Q. Zhao, P. Long, J. Dong, Int. J. Hydrog. Energy 34 (2009) 1377–1382.
doi: 10.1016/j.ijhydene.2008.11.048
K. Guesh, C.A.D. Caiuby, Á. Mayoral, Cryst. Growth Des. 17 (2017) 1806–1813.
doi: 10.1021/acs.cgd.6b01776
F.L. Li, P. Wang, X. Huang, et al., Angew. Chem. Int. Ed 58 (2019) 7051–7056.
doi: 10.1002/anie.201902588
C. Yang, C. Yang, W.J. Cai, et al., Catal. Sci. Technol. 10 (2020) 3897–3903.
doi: 10.1039/d0cy00567c
K. Ge, S. Sun, Y. Zhao, et al., Angew. Chem. Int. Ed 60 (2021) 12097–12102.
doi: 10.1002/anie.202102632
K. Fan, H. Chen, Y. Ji, et al., Nat. Commun. 7 (2016) 11981.
M. Gong, Y. Li, H. Wang, et al., J. Am. Chem. Soc. 135 (2013) 8452–8455.
doi: 10.1021/ja4027715
J. Jiang, A. Zhang, L. Li, L. Ai, J. Power Sources 278 (2015) 445–451.
doi: 10.1016/j.jpowsour.2014.12.085
C. Qiao, Y. Zhang, Y. Zhu, et al., J. Mater. Chem. A 3 (2015) 6878–6883.
S. Bera, W.J. Lee, E.K. Koh, et al., J. Phys. Chem. C 124 (2020) 16879–16887.
doi: 10.1021/acs.jpcc.0c01411
L. Chen, H. Zhang, L. Chen, et al., J. Mater. Chem. A 5 (2017) 22568–22575.
Z. Li, M. Shao, H. An, et al., Chem. Sci. 6 (2015) 6624–6631.
doi: 10.1039/C5SC02417J
P. Priecel, J.A. Lopez-Sanchez, ACS Sustain. Chem. Eng. 7 (2019) 3–21.
doi: 10.1021/acssuschemeng.8b03286
J. Han, Q. Wei, J. Zhang, J. Mater. Chem. A 8 (2020) 18232–18243.
doi: 10.1039/d0ta06527g
J. Wang, M. Zhang, J. Li, et al., Dalton Trans. 49 (2020) 14290–14296.
doi: 10.1039/d0dt03085f
L. Zhuang, L. Ge, H. Liu, et al., Angew. Chem. Int. Ed 58 (2019) 13565–13572.
doi: 10.1002/anie.201907600
M. Cai, Q. Liu, Z. Xue, et al., J. Mater. Chem. A 8 (2020) 190–195.
doi: 10.1039/c9ta09397d
W. Zhang, H. Yu, T. Li, et al., Appl. Catal. B Environ. 264 (2020) 118532.
Y. Dong, J. Yang, Y. Liu, et al., Dalton Trans. 49 (2020) 6355–6362.
doi: 10.1039/c9dt04633j
C. Mahala, M.D. Sharma, M. Basu, Electrochim. Acta 273 (2018) 462–473.
M. Jiang, J. Li, J. Li, et al., Nanoscale 11 (2019) 9654–9660.
doi: 10.1039/c8nr10521a
X. Zhang, J. Zhang, B. Xu, K. Wang, X.W. Sun, Nano Energy 41 (2017) 788–797.
J. Meng, Y. Zhou, H. Chi, et al., ChemistrySelect 4 (2019) 8661–8670.
doi: 10.1002/slct.201901713
Q. Liu, J. Chen, P. Yang, et al., Int. J. Hydrog. Energy 46 (2021) 416–424.
doi: 10.3390/insects12050416
Y. Hao, Q. Liu, Y. Zhou, et al., Energy Environ. Mater. 2 (2019) 18–21.
doi: 10.1002/eem2.12024
K. Rui, G. Zhao, Y. Chen, et al., Adv. Funct. Mater. 28 (2018) 1801554.
doi: 10.1002/adfm.201801554
S. Pan, B. Li, J. Yu, L. Zhao, Y. Zhang, Appl. Surf. Sci. 539 (2021) 148305.
G. Jia, Y. Hu, Q. Qian, et al., ACS Appl. Mater. Interfaces 8 (2016) 14527–14534.
doi: 10.1021/acsami.6b02733
F. Song, X. Hu, J. Am. Chem. Soc. 136 (2014) 16481–16484.
doi: 10.1021/ja5096733
S. Jiao, Z. Yao, M. Li, et al., Nanoscale 11 (2019) 18894–18899.
doi: 10.1039/c9nr07465a
K. Yan, T. Lafleur, J. Chai, C. Jarvis, Electrochem. Commun. 62 (2016) 24–28.
C. Tang, H.S. Wang, H.F. Wang, et al., Adv. Mater. 27 (2015) 4516–4522.
doi: 10.1002/adma.201501901
M. Jiang, J. Li, X. Cai, et al., Nanoscale 10 (2018) 19774–19780.
doi: 10.1039/c8nr05659e
H. Huang, Q. Xue, Y. Zhang, Y. Chen, Electrochim. Acta. 333 (2020) 135544.
Y. Ying, J.F. Godínez Salomón, L. Lartundo-Rojas, et al., Nanoscale Adv. 3 (2021) 1976–1996.
doi: 10.1039/d0na00912a
P. Tian, Y. Yu, X. Yin, X. Wang, Nanoscale 10 (2018) 5054–5059.
X.P. Zhang, H.Y. Wang, H. Zheng, W. Zhang, R. Cao, Chin. J. Catal. 42 (2021) 1253–1268.
X.P. Zhang, A. Chandra, Y.M. Lee, et al., Chem. Soc. Rev. 50 (2021) 4804–4811.
doi: 10.1039/d0cs01456g
L. Xie, X.P. Zhang, B. Zhao, et al., Angew. Chem. Int. Ed. 60 (2021) 7576–7581.
doi: 10.1002/anie.202015478
X. Li, X.P. Zhang, M. Guo, et al., J. Am. Chem. Soc. 143 (2021) 14613–14621.
doi: 10.1021/jacs.1c05204
Y. Liu, Y. Han, Z. Zhang, et al., Chem. Sci. 10 (2019) 2613–2622.
doi: 10.1039/c8sc04529a
L. Chen, X.L. Dong, Y.G. Wang, Y.Y. Xia, Nat. Commun. 7 (2016) 11741.
J. Zhang, X.X. Li, Y.T. Liu, et al., Nanoscale 10 (2018) 11997–12002.
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334 (2011) 1383–1385.
doi: 10.1126/science.1212858
C. Kuo, K. Balamurugan, H. Wei, et al., Curr. Appl. Phys. 16 (2016) 404–408.
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Fan Fan , Hao Xiu , Yuting Wang , Yongpeng Cui , Yajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Chunchun Wang , Changjun You , Ke Rong , Chuqi Shen , Fang Yang , Shijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045
Zekun Zhang , Shiji Li , Qian Zhang , Shanshan Li , Liu Yang , Wei Yan , Hao Xu . Further study of CO2 electrochemical reduction to gas products on Cu: Influence of the electrolyte. Chinese Chemical Letters, 2025, 36(9): 110742-. doi: 10.1016/j.cclet.2024.110742
Yuanhua Xiao , Jinhui Shou , Shiwei Zhang , Ya Shen , Junwei Liu , Dangcheng Su , Yang Kong , Xiaodong Jia , Qingxiang Yang , Shaoming Fang , Xuezhao Wang . Synergistic interlayer confinement and built-in electric field construct reconstruction-inhibited cobalt selenide for robust oxygen evolution at high current density. Chinese Chemical Letters, 2025, 36(11): 111441-. doi: 10.1016/j.cclet.2025.111441
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Liwei Hou , Xianyun Peng , Siliu Lyu , Zhongjian Li , Bin Yang , Qinghua Zhang , Qinggang He , Lecheng Lei , Yang Hou . Advancements in MXene-based nanohybrids for electrochemical water splitting. Chinese Chemical Letters, 2025, 36(6): 110392-. doi: 10.1016/j.cclet.2024.110392
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Peiyang Du , Ling Yuan , Tong Bao , Yamin Xi , Jiaxin Li , Yin Bi , Luli Yin , Jing Wang , Chao Liu . Facet effect of metal-organic frameworks on supporting co-catalysts for photocatalytic hydrogen peroxide production. Chinese Chemical Letters, 2025, 36(11): 110472-. doi: 10.1016/j.cclet.2024.110472
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Zhihan Chang , Yuchen Zhang , Yuan Tian , Xiuli Wang . Achieving high-proportioned 1T-MoS2 within heterostructures derived from polymolybdate-based complex for boosting electrocatalytic hydrogen evolution and oxygen evolution. Chinese Chemical Letters, 2025, 36(8): 110197-. doi: 10.1016/j.cclet.2024.110197
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Weibin Shen , Jie Liu , Gongyu Wen , Shuai Li , Binhui Yu , Shuangyu Song , Bojie Gong , Rongyang Zhang , Shibao Liu , Hongpeng Wang , Yao Wang , Yujing Liu , Huadong Yuan , Jianming Luo , Shihui Zou , Xinyong Tao , Jianwei Nai . Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(7): 110184-. doi: 10.1016/j.cclet.2024.110184
Da Yue , Tanglue Feng , Zhicheng Zhu , Mingcheng Zhang , Liyuan Chen , Xiao Han , Haizhu Sun , Bai Yang . Carbonized polymer dots confined active Ru-O sites for boosting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2025, 36(11): 111393-. doi: 10.1016/j.cclet.2025.111393
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Qi Zhang , Bin Han , Yucheng Jin , Mingrun Li , Enhui Zhang , Jianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330
Xiangrong Pan , Xixi Hou , Yuhang Du , Zhixin Pang , Shiyang He , Lan Wang , Jianxue Yang , Longfei Mao , Jianhua Qin , Haixia Wu , Baozhong Liu , Zhan Zhou , Lufang Ma , Chaoliang Tan . Solvent-mediated synthesis of 2D In-TCPP MOF nanosheets for enhanced photodynamic antibacterial therapy. Chinese Chemical Letters, 2025, 36(12): 110536-. doi: 10.1016/j.cclet.2024.110536