Bimetallic two-dimensional materials for electrocatalytic oxygen evolution
-
* Corresponding author.
E-mail address: hecx@szu.edu.cn (C. He).
Citation: Xiaojie Li, Qi Hu, Hengpan Yang, Tao Ma, Xiaoyan Chai, Chuanxin He. Bimetallic two-dimensional materials for electrocatalytic oxygen evolution[J]. Chinese Chemical Letters, ;2022, 33(8): 3657-3671. doi: 10.1016/j.cclet.2021.12.001
Q. Hu, Z. Wang, X. Huang, et al., Energy Environ. Sci. 13 (2020) 5097–5103.
doi: 10.1039/d0ee02815k
Y. Lei, T. Xu, S. Ye, et al., Appl. Catal. B Environ. 285 (2021) 119809.
doi: 10.1016/j.apcatb.2020.119809
Q. Hu, Z. Wang, X. Huang, et al., Appl. Catal. B Environ. 286 (2021) 119920.
doi: 10.1016/j.apcatb.2021.119920
H. Zhang, W. Tian, L. Zhou, et al., Appl. Catal. B Environ. 223 (2018) 2–9.
doi: 10.53388/life2018-0711-002
H. Zhang, W. Tian, X. Guo, et al., ACS Appl. Mater. Interfaces 8 (2016) 35203–35212.
doi: 10.1021/acsami.6b10918
F. Cao, G. Pan, Y. Zhang, X. Xia, Chin. Chem. Lett. 31 (2020) 2230–2234.
doi: 10.1016/j.cclet.2020.01.037
A.S. Huang, G.H. Zhao, H.X. Li, Chin. Chem. Lett. 18 (2007) 997–1000.
doi: 10.1016/j.cclet.2007.05.034
X. Li, H. Zhang, Y. Liu, et al., Chem. Eng. J. 390 (2020) 124634.
doi: 10.1016/j.cej.2020.124634
X. Li, S. Zhao, X. Duan, et al., Appl. Catal. B Environ. 283 (2021) 119660.
doi: 10.1016/j.apcatb.2020.119660
Y. Liu, X. Xu, J. Zhang, et al., Appl. Catal. B Environ. 239 (2018) 334–344.
doi: 10.1016/j.apcatb.2018.08.028
J. Zhang, Y. Li, X. Zhao, et al., ACS Nano 14 (2020) 17505–17514.
doi: 10.1021/acsnano.0c07934
Q. Hu, G. Li, X. Huang, et al., J. Mater. Chem A 7 (2019) 19531–19538.
doi: 10.1039/c9ta06244k
X. Zhao, J. Meng, Z. Yan, F. Cheng, J. Chen, Chin. Chem. Lett. 30 (2019) 319–323.
doi: 10.1016/j.cclet.2018.03.035
H. Wang, S. Zhu, J. Deng, et al., Chin. Chem. Lett. 32 (2021) 291–298.
doi: 10.1016/j.cclet.2020.02.018
Q. Hu, X. Huang, Z. Wang, et al., J. Mater. Chem. A 8 (2020) 2140–2146.
doi: 10.1039/c9ta12713e
H. Zhang, W. Tian, Y. Li, et al., J. Mater. Chem. A 6 (2018) 24149–24156.
doi: 10.1039/c8ta06921b
H. Zhang, W. Tian, X. Duan, et al., Adv. Mater. 32 (2020) 1904037.
doi: 10.1002/adma.201904037
H. Zhang, W. Tian, X. Duan, et al., Nanoscale 12 (2020) 6937–6952.
doi: 10.1039/d0nr00652a
P. Han, T. Tan, F. Wu, et al., Chin. Chem. Lett. 31 (2020) 2469–2472.
doi: 10.1016/j.cclet.2020.03.009
C. Wang, L. Jin, H. Shang, et al., Chin. Chem. Lett. 32 (2021) 2108–2116.
doi: 10.1016/j.cclet.2020.11.051
Q. Hu, X. Liu, B. Zhu, et al., Nano Energy 50 (2018) 212–219.
doi: 10.1016/j.nanoen.2018.05.033
B. Zhu, Q. Hu, X. Liu, et al., Chem. Commun. 54 (2018) 10187–10190.
doi: 10.1039/C8CC06270F
Q. Hu, G. Li, Z. Han, et al., J. Mater. Chem. A 7 (2019) 14380–14390.
doi: 10.1039/c9ta04163j
Q. Hu, G. Li, Z. Han, et al., Adv. Energy Mater. 9 (2019) 1901130.
doi: 10.1002/aenm.201901130
X. Li, C. Wang, Y.Y. Liu, et al., Chin. Chem. Lett. 32 (2021) 2239–2242.
doi: 10.1016/j.cclet.2020.12.037
L. Jin, H. Pang, Chin. Chem. Lett. 31 (2020) 2300–2304.
doi: 10.1016/j.cclet.2020.03.041
Z. Cao, Z. Wang, F. Li, et al., Electrochim. Acta 332 (2020) 135464.
doi: 10.1016/j.electacta.2019.135464
H. Yang, X. Wang, Q. Hu, et al., Small Methods 4 (2020) 1900826.
doi: 10.1002/smtd.201900826
H. Yang, Q. Lin, Y. Wu, et al., Nano Energy 70 (2020) 104454.
doi: 10.1016/j.nanoen.2020.104454
H. Yang, X. Yu, J. Shao, et al., J. Mater. Chem. A 8 (2020) 15675–15680.
doi: 10.1039/d0ta03770b
G. Li, L. Pei, Y. Wu, et al., J. Mater. Chem. A 7 (2019) 11223–11233.
doi: 10.1039/c9ta02256b
H. Luo, W.J. Jiang, S. Niu, et al., Small 16 (2020) 2001171.
doi: 10.1002/smll.202001171
Y. Guan, N. Li, Y. Li, et al., Nanoscale 12 (2020) 14259–14266.
doi: 10.1039/d0nr03495a
Y. Sun, Y. Guan, X. Wu, et al., Nanoscale 13 (2021) 3227–3236.
doi: 10.1039/d0nr07892a
L. Zeng, L. Yang, J. Lu, et al., Chin. Chem. Lett. 29 (2018) 1875–1878.
doi: 10.1016/j.cclet.2018.10.026
Y. Li, Q. Guo, Y. Jiang, et al., Chin. Chem. Lett. 32 (2021) 755–760.
doi: 10.1016/j.cclet.2020.05.012
X. Li, Y. Wang, J. Wang, et al., Adv. Mater. 32 (2020) 2003414.
doi: 10.1002/adma.202003414
L. Zhang, C. Lu, F. Ye, et al., Adv. Mater. 33 (2021) 2007523.
doi: 10.1002/adma.202007523
L. Zhang, W. Cai, N. Bao, Adv. Mater. 33 (2021) 2100745.
doi: 10.1002/adma.202100745
H. Zhang, C. Li, Q. Lu, M.J. Cheng, W.A. Goddard, J. Am. Chem. Soc. 143 (2021) 3967–3974.
doi: 10.1021/jacs.1c00377
Z. Chen, R. Zheng, M. Graś, et al., Appl. Catal. B Environ. 288 (2021) 120037.
doi: 10.1016/j.apcatb.2021.120037
H. Qiao, H. Liu, Z. Huang, et al., Adv. Energy Mater. 10 (2020) 2002424.
doi: 10.1002/aenm.202002424
R. Kötz, H. Neff, S. Stucki, J. Electrochem. Soc. 131 (1984) 72–77.
doi: 10.1149/1.2115548
R. Kötz, H.J. Lewerenz, S. Stucki, J. Electrochem. Soc. 130 (1983) 825–829.
doi: 10.1149/1.2119829
L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, Adv. Energy Mater. 9 (2019) 1803358.
doi: 10.1002/aenm.201803358
S. Cao, J. Qi, F. Lei, Chem. Eng. J. 413 (2021) 127540.
doi: 10.1016/j.cej.2020.127540
J. Shan, C. Ye, S. Chen, et al., J. Am. Chem. Soc. 143 (2021) 5201–5211.
doi: 10.1021/jacs.1c01525
C. Xuan, W. Lei, J. Wang, et al., J. Mater. Chem. A 7 (2019) 12350–12357.
doi: 10.1039/c9ta02761k
Y. Zhang, Y. Wang, H. Jiang, M. Huang, Small 16 (2020) 2002550.
doi: 10.1002/smll.202002550
Y. Zuo, D. Rao, S. Ma, et al., ACS Nano 13 (2019) 11469–11476.
doi: 10.1021/acsnano.9b04956
Y. Guo, C. Zhang, J. Zhang, et al., ACS Sustain. Chem. Eng. 9 (2021) 2047–2056.
doi: 10.1021/acssuschemeng.0c06969
C. Liao, B. Yang, N. Zhang, et al., Adv. Funct. Mater. 29 (2019) 1904020.
doi: 10.1002/adfm.201904020
T. Wu, S. Zhang, K. Bu, et al., J. Mater. Chem. A 7 (2019) 22063–22069.
doi: 10.1039/c9ta07962a
P. He, X.Y. Yu, X.W.D. Lou, Angew. Chem. Int. Ed. 56 (2017) 3897–3900.
doi: 10.1002/anie.201612635
Y. Wang, L. Sun, L. Lu, et al., J. Mater. Chem. A 9 (2021) 3482–3491.
doi: 10.1039/d0ta10835a
M. Zhou, Q. Weng, X. Zhang, et al., J. Mater. Chem. A 5 (2017) 4335–4342.
doi: 10.1039/C6TA09366C
L. Yi, Y. Niu, B. Feng, M. Zhao, W. Hu, J. Mater. Chem. A 9 (2021) 4213–4220.
doi: 10.1039/d0ta09617b
S. Hao, G. Zheng, S. Gao, et al., ACS Sustain. Chem. Eng. 7 (2019) 14361–14367.
doi: 10.1021/acssuschemeng.9b03830
H. Meng, W. Xi, Z. Ren, et al., Appl. Catal. B Environ. 284 (2021) 119707.
doi: 10.1016/j.apcatb.2020.119707
Y. Feng, H. Han, K.M. Kim, S. Dutta, T. Song, J. Catal. 369 (2019) 168–174.
doi: 10.1016/j.jcat.2018.11.005
X. Gu, Z. Liu, H. Liu, C. Pei, L. Feng, Chem. Eng. J. 403 (2021) 126371.
doi: 10.1016/j.cej.2020.126371
R. Gao, D. Yan, Adv. Energy Mater. 10 (2020) 1900954.
doi: 10.1002/aenm.201900954
Y. Xue, Y. Wang, Z. Pan, K. Sayama, Angew. Chem. Int. Ed. 60 (2021) 10469–10480.
doi: 10.1002/anie.202011215
S. Li, Y. Gao, N. Li, et al., Energy Environ. Sci. 14 (2021) 1897–1927.
doi: 10.1039/d0ee03697h
M. Alhabeb, K. Maleski, B. Anasori, et al., Chem. Mater. 29 (2017) 7633–7644.
doi: 10.1021/acs.chemmater.7b02847
D. Voiry, H. Yamaguchi, J. Li, et al., Nat. Mater. 12 (2013) 850–855.
doi: 10.1038/nmat3700
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6 (2011) 147–150.
doi: 10.1038/nnano.2010.279
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306 (2004) 666–669.
doi: 10.1126/science.1102896
A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183–191.
doi: 10.1038/nmat1849
L. Zhao, B. Dong, S. Li, et al., ACS Nano 11 (2017) 5800–5807.
doi: 10.1021/acsnano.7b01409
S. Chen, Z. Kang, X. Hu, et al., Adv. Mater. 29 (2017) 1701687.
doi: 10.1002/adma.201701687
Q. Liang, L. Zhong, C. Du, et al., Nano Energy 47 (2018) 257–265.
doi: 10.1016/j.nanoen.2018.02.048
Y. Xu, B. Li, S. Zheng, et al., J. Mater. Chem. A 6 (2018) 22070–22076.
doi: 10.1039/c8ta03128b
T. Wen, M. Liu, S. Chen, et al., Small 16 (2020) 1907669.
doi: 10.1002/smll.201907669
S. Chandrasekaran, D. Ma, Y. Ge, et al., Nano Energy 77 (2020) 105080.
doi: 10.1016/j.nanoen.2020.105080
F. Yang, X. Chen, Z. Li, et al., ACS Appl. Energy Mater. 3 (2020) 3577–3585.
doi: 10.1021/acsaem.0c00080
J. Yu, F. Yu, M.F. Yuen, C. Wang, J. Mater. Chem. A 9 (2021) 9389–9430.
doi: 10.1039/d0ta11910e
L. Wang, J. Geng, W. Wang, et al., Nano Res. 8 (2015) 3815–3822.
doi: 10.1007/s12274-015-0881-0
X. Li, D.D. Ma, C. Cao, et al., Small 15 (2019) 1902218.
doi: 10.1002/smll.201902218
J. Du, C. Li, X. Wang, X. Shi, H.P. Liang, ACS Appl. Mater. Interfaces 11 (2019) 25958–25966. f3.
doi: 10.1021/acsami.9b07164
D. Tang, R. Zhao, C. Shen, et al., Electrochim. Acta 324 (2019) 134888.
doi: 10.1016/j.electacta.2019.134888
B.N. Khiarak, M. Hasanzadeh, M. Mojaddami, H. Shahriyar Far, A. Simchi, Chem. Commun. 56 (2020) 3135–3138.
doi: 10.1039/c9cc09908e
Z. Gao, Z. Yu, Y. Huang, et al., J. Mater. Chem. A 8 (2020) 5907–5912.
doi: 10.1039/c9ta14023a
Y. Li, Z. Wang, J. Hu, et al., Adv. Funct. Mater. 30 (2020) 1910498.
doi: 10.1002/adfm.201910498
D. Xiong, M. Gu, C. Chen, et al., Chem. Eng. J. 404 (2021) 127111.
doi: 10.1016/j.cej.2020.127111
W. Zhang, K. Zhou, Small 13 (2017) 1700806.
doi: 10.1002/smll.201700806
Y. Zhou, J. Li, X. Gao, W. Chu, G. Gao, J. Mater. Chem. A 9 (2021) 9979–9999.
doi: 10.1039/d1ta00154j
X. Lu, H. Xue, H. Gong, et al., Nano Micro Lett. 12 (2020) 86.
doi: 10.1007/s40820-020-00421-5
J. Zhang, C. Si, T. Kou, J. Wang, Z. Zhang, Sustain. Energy Fuels 4 (2020) 2625–2637.
doi: 10.1039/c9se01312a
J. Lei, M. Zeng, L. Fu, Chem. Res. Chin. Univ. 36 (2020) 504–510.
doi: 10.1007/s40242-020-0190-3
W. Huang, J. Tang, F. Diao, et al., ChemElectroChem 7 (2020) 4695–4712.
doi: 10.1002/celc.202001137
S. Zhao, Y. Wang, J. Dong, et al., Nat. Energy 1 (2016) 16184.
doi: 10.1038/nenergy.2016.184
J. Li, P. Liu, J. Mao, J. Yan, W. Song, J. Mater. Chem. A 9 (2021) 1623–1629.
doi: 10.1039/d0ta10870g
Y. Wang, M. Qiao, Y. Li, S. Wang, Small 14 (2018) 1800136.
doi: 10.1002/smll.201800136
L. Zhuang, Y. Jia, T. He, et al., Nano Res. 11 (2018) 3509–3518.
doi: 10.1007/s12274-018-2050-8
S.H. Ye, Z.X. Shi, J.X. Feng, Y.X. Tong, G.R. Li, Angew. Chemie Int. Ed 57 (2018) 2672–2676.
doi: 10.1002/anie.201712549
X. Hu, S. Zhang, J. Sun, et al., Nano Energy 56 (2019) 109–117.
doi: 10.1016/j.nanoen.2018.11.047
M. Rosa, V.C. Bassetto, H.H. Girault, A. Lesch, V. Esposito, ACS Appl. Energy Mater. 3 (2020) 1017–1026.
doi: 10.1021/acsaem.9b02055
F. Sun, G. Wang, Y. Ding, et al., Adv. Energy Mater. 8 (2018) 1800584.
doi: 10.1002/aenm.201800584
C. Pan, Z. Liu, M. Huang, Appl. Surf. Sci. 529 (2020) 147201.
doi: 10.1016/j.apsusc.2020.147201
F. He, X. Deng, M. Chen, Fuel 186 (2016) 605–612.
doi: 10.1016/j.fuel.2016.08.105
Z. Hu, X. Xiao, H. Jin, et al., Nat. Commun. 8 (2017) 15630.
doi: 10.1038/ncomms15630
J. Yu, Q. Wang, D. O'Hare, L. Sun. Chem. Soc. Rev. 46 (2017) 5950–5974.
doi: 10.1039/C7CS00318H
Y. Li, W. Zhu, X. Fu, et al., Inorg. Chem. 58 (2019) 6231–6237.
doi: 10.1021/acs.inorgchem.9b00463
R.L. Peng, J.L. Li, X.N. Wang, et al., Inorg. Chem. Front. 7 (2020) 4661–4668.
doi: 10.1039/d0qi00812e
Q. Zhou, Y. Chen, G. Zhao, et al., ACS Catal. 8 (2018) 5382–5390.
doi: 10.1021/acscatal.8b01332
L.J. Wang, H. Deng, H. Furukawa, et al., Inorg. Chem. 53 (2014) 5881–5883.
doi: 10.1021/ic500434a
J. Qian, F. Sun, L. Qin, Mater. Lett. 82 (2012) 220–223.
doi: 10.1016/j.matlet.2012.05.077
J. Li, S. Cheng, Q. Zhao, P. Long, J. Dong, Int. J. Hydrog. Energy 34 (2009) 1377–1382.
doi: 10.1016/j.ijhydene.2008.11.048
K. Guesh, C.A.D. Caiuby, Á. Mayoral, Cryst. Growth Des. 17 (2017) 1806–1813.
doi: 10.1021/acs.cgd.6b01776
F.L. Li, P. Wang, X. Huang, et al., Angew. Chem. Int. Ed 58 (2019) 7051–7056.
doi: 10.1002/anie.201902588
C. Yang, C. Yang, W.J. Cai, et al., Catal. Sci. Technol. 10 (2020) 3897–3903.
doi: 10.1039/d0cy00567c
K. Ge, S. Sun, Y. Zhao, et al., Angew. Chem. Int. Ed 60 (2021) 12097–12102.
doi: 10.1002/anie.202102632
K. Fan, H. Chen, Y. Ji, et al., Nat. Commun. 7 (2016) 11981.
M. Gong, Y. Li, H. Wang, et al., J. Am. Chem. Soc. 135 (2013) 8452–8455.
doi: 10.1021/ja4027715
J. Jiang, A. Zhang, L. Li, L. Ai, J. Power Sources 278 (2015) 445–451.
doi: 10.1016/j.jpowsour.2014.12.085
C. Qiao, Y. Zhang, Y. Zhu, et al., J. Mater. Chem. A 3 (2015) 6878–6883.
S. Bera, W.J. Lee, E.K. Koh, et al., J. Phys. Chem. C 124 (2020) 16879–16887.
doi: 10.1021/acs.jpcc.0c01411
L. Chen, H. Zhang, L. Chen, et al., J. Mater. Chem. A 5 (2017) 22568–22575.
Z. Li, M. Shao, H. An, et al., Chem. Sci. 6 (2015) 6624–6631.
doi: 10.1039/C5SC02417J
P. Priecel, J.A. Lopez-Sanchez, ACS Sustain. Chem. Eng. 7 (2019) 3–21.
doi: 10.1021/acssuschemeng.8b03286
J. Han, Q. Wei, J. Zhang, J. Mater. Chem. A 8 (2020) 18232–18243.
doi: 10.1039/d0ta06527g
J. Wang, M. Zhang, J. Li, et al., Dalton Trans. 49 (2020) 14290–14296.
doi: 10.1039/d0dt03085f
L. Zhuang, L. Ge, H. Liu, et al., Angew. Chem. Int. Ed 58 (2019) 13565–13572.
doi: 10.1002/anie.201907600
M. Cai, Q. Liu, Z. Xue, et al., J. Mater. Chem. A 8 (2020) 190–195.
doi: 10.1039/c9ta09397d
W. Zhang, H. Yu, T. Li, et al., Appl. Catal. B Environ. 264 (2020) 118532.
Y. Dong, J. Yang, Y. Liu, et al., Dalton Trans. 49 (2020) 6355–6362.
doi: 10.1039/c9dt04633j
C. Mahala, M.D. Sharma, M. Basu, Electrochim. Acta 273 (2018) 462–473.
M. Jiang, J. Li, J. Li, et al., Nanoscale 11 (2019) 9654–9660.
doi: 10.1039/c8nr10521a
X. Zhang, J. Zhang, B. Xu, K. Wang, X.W. Sun, Nano Energy 41 (2017) 788–797.
J. Meng, Y. Zhou, H. Chi, et al., ChemistrySelect 4 (2019) 8661–8670.
doi: 10.1002/slct.201901713
Q. Liu, J. Chen, P. Yang, et al., Int. J. Hydrog. Energy 46 (2021) 416–424.
doi: 10.3390/insects12050416
Y. Hao, Q. Liu, Y. Zhou, et al., Energy Environ. Mater. 2 (2019) 18–21.
doi: 10.1002/eem2.12024
K. Rui, G. Zhao, Y. Chen, et al., Adv. Funct. Mater. 28 (2018) 1801554.
doi: 10.1002/adfm.201801554
S. Pan, B. Li, J. Yu, L. Zhao, Y. Zhang, Appl. Surf. Sci. 539 (2021) 148305.
G. Jia, Y. Hu, Q. Qian, et al., ACS Appl. Mater. Interfaces 8 (2016) 14527–14534.
doi: 10.1021/acsami.6b02733
F. Song, X. Hu, J. Am. Chem. Soc. 136 (2014) 16481–16484.
doi: 10.1021/ja5096733
S. Jiao, Z. Yao, M. Li, et al., Nanoscale 11 (2019) 18894–18899.
doi: 10.1039/c9nr07465a
K. Yan, T. Lafleur, J. Chai, C. Jarvis, Electrochem. Commun. 62 (2016) 24–28.
C. Tang, H.S. Wang, H.F. Wang, et al., Adv. Mater. 27 (2015) 4516–4522.
doi: 10.1002/adma.201501901
M. Jiang, J. Li, X. Cai, et al., Nanoscale 10 (2018) 19774–19780.
doi: 10.1039/c8nr05659e
H. Huang, Q. Xue, Y. Zhang, Y. Chen, Electrochim. Acta. 333 (2020) 135544.
Y. Ying, J.F. Godínez Salomón, L. Lartundo-Rojas, et al., Nanoscale Adv. 3 (2021) 1976–1996.
doi: 10.1039/d0na00912a
P. Tian, Y. Yu, X. Yin, X. Wang, Nanoscale 10 (2018) 5054–5059.
X.P. Zhang, H.Y. Wang, H. Zheng, W. Zhang, R. Cao, Chin. J. Catal. 42 (2021) 1253–1268.
X.P. Zhang, A. Chandra, Y.M. Lee, et al., Chem. Soc. Rev. 50 (2021) 4804–4811.
doi: 10.1039/d0cs01456g
L. Xie, X.P. Zhang, B. Zhao, et al., Angew. Chem. Int. Ed. 60 (2021) 7576–7581.
doi: 10.1002/anie.202015478
X. Li, X.P. Zhang, M. Guo, et al., J. Am. Chem. Soc. 143 (2021) 14613–14621.
doi: 10.1021/jacs.1c05204
Y. Liu, Y. Han, Z. Zhang, et al., Chem. Sci. 10 (2019) 2613–2622.
doi: 10.1039/c8sc04529a
L. Chen, X.L. Dong, Y.G. Wang, Y.Y. Xia, Nat. Commun. 7 (2016) 11741.
J. Zhang, X.X. Li, Y.T. Liu, et al., Nanoscale 10 (2018) 11997–12002.
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334 (2011) 1383–1385.
doi: 10.1126/science.1212858
C. Kuo, K. Balamurugan, H. Wei, et al., Curr. Appl. Phys. 16 (2016) 404–408.
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Dong-Ling Kuang , Song Chen , Shaoru Chen , Yong-Jie Liao , Ning Li , Lai-Hon Chung , Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580