Recent advances in DNA glycosylase assays
-
* Corresponding authors.
E-mail addresses: zhanghuige@lzu.edu.cn (H. Zhang), hlchen@lzu.edu.cn (H. Chen).
Citation: Lili Wang, Huige Zhang, Wei Chen, Hongli Chen, Jianxi Xiao, Xingguo Chen. Recent advances in DNA glycosylase assays[J]. Chinese Chemical Letters, ;2022, 33(8): 3603-3612. doi: 10.1016/j.cclet.2021.10.053
J.D. Watson, F.H. Crick, Nature 171 (1953) 737–738.
doi: 10.1038/171737a0
J.T. Stivers, Y.L. Jiang, Chem. Rev. 103 (2003) 2729–2759.
doi: 10.1021/cr010219b
T. Lindahl, Nature 362 (1993) 709–715.
doi: 10.1038/362709a0
S. Bjelland, E. Seeberg, Mutat. Res. 531 (2003) 37–80.
doi: 10.1016/j.mrfmmm.2003.07.002
J.F. Morreall, L. Petrova, P.W. Doetsch, J. Cell Physiol. 228 (2013) 2257–2261.
doi: 10.1002/jcp.24400
H.Z. Ng, M. Ng, C.M. Eng, Z.Q. Gao, Trac-Trend Anal. Chem. 83 (2016) 102–115.
doi: 10.1016/j.trac.2016.08.005
T. Helleday, S. Eshtad, S. Nik-Zainal, Nat. Rev. Genet. 15 (2014) 585–598.
doi: 10.1038/nrg3729
N.C. Bauer, A.H. Corbett, P.W. Doetsch, Nucleic Acids Res 43 (2015) 10083–10101.
M. Schieber, N.S. Chandel, Curr. Biol. 24 (2014) 453–462.
doi: 10.1016/j.cub.2014.03.034
S. Nishimura, Free Radical Bio. Med. 32 (2002) 813–821.
doi: 10.1016/S0891-5849(02)00778-5
S.I. Yonekura, N. Nakamura, S. Yonei, Q.M. Zhang-Akiyama, J. Radiat. Res. 50 (2009) 19–26.
doi: 10.1269/jrr.08080
F. Drablos, E. Feyzi, P.A. Aas, et al., DNA Repair (Amst. ) 3 (2004) 1389–1407.
doi: 10.1016/j.dnarep.2004.05.004
Y.J. Kim, D.M. Wilson, Curr. Mol. Pharmacol. 5 (2012) 3–13.
doi: 10.2174/1874467211205010003
P. Fortini, B. Pascucci, E. Parlanti, et al., Biochimie 85 (2003) 1053–1071.
doi: 10.1016/j.biochi.2003.11.003
S.S. David, S.D. Williams, Chem. Rev. 98 (1998) 1221–1262.
doi: 10.1021/cr980321h
P.J. Berti, J.A. McCann, Chem. Rev. 106 (2006) 506–555.
doi: 10.1021/cr040461t
D.B. Lombard, K.F. Chua, R. Mostoslavsky, et al., Cell 120 (2005) 497–512.
doi: 10.1016/j.cell.2005.01.028
J. de Boer, J.O. Andressoo, J. de Wit, et al., Science 296 (2002) 1276–1279.
doi: 10.1126/science.1070174
S. Kawanishi, Y. Hiraku, S. Oikawa, Mutat. Res. 488 (2001) 65–76.
doi: 10.1016/S1383-5742(00)00059-4
N. Al-Tassan, N.H. Chmiel, J. Maynard, et al., Nat. Genet. 30 (2002) 227–232.
doi: 10.1038/ng828
Y. Xie, H. Yang, C. Cunanan, et al., Cancer Res. 64 (2004) 3096–3102.
doi: 10.1158/0008-5472.CAN-03-3834
S. Boiteux, J.P. Radicella, Arch. Biochem. Biophys. 377 (2000) 1–8.
doi: 10.1006/abbi.2000.1773
H. Nilsen, G. Stamp, S. Andersen, et al., Oncogene 22 (2003) 5381–5386.
doi: 10.1038/sj.onc.1206860
I.I. Kruman, E. Schwartz, Y. Kruman, et al., J. Biol. Chem. 279 (2004) 43952–43960.
doi: 10.1074/jbc.M408025200
M. Endres, D. Biniszkiewicz, R.W. Sobol, et al., J. Clin. Invest. 113 (2004) 1711–1721.
doi: 10.1172/JCI200420926
M.R. Vasko, C. Guo, M.R. Kelley, DNA Repair (Amst. ) 4 (2005) 367–379.
doi: 10.1016/j.dnarep.2004.11.006
J.F. Harrison, S.B. Hollensworth, D.R. Spitz, et al., Nucleic Acids Res. 33 (2005) 4660–4671.
doi: 10.1093/nar/gki759
H. Krokan, C.U. Wittwer, Nucleic Acids Res. 9 (1981) 2599–2613.
doi: 10.1093/nar/9.11.2599
E.L. Kreklau, M. Limp-Foster, N. Liu, et al., Nucleic Acids Res. 29 (2001) 2558–2566.
doi: 10.1093/nar/29.12.2558
D. Nikolic, Anal. Biochem. 396 (2010) 275–279.
doi: 10.1016/j.ab.2009.09.038
A. Darwanto, A. Farrel, D.K. Rogstad, L.C. Sowers, Anal. Biochem. 394 (2009) 13–23.
doi: 10.1016/j.ab.2009.07.015
D. Li, P.F. Firozi, W. Zhang, et al., Mutat. Res. 513 (2002) 37–48.
doi: 10.1016/S1383-5718(01)00291-1
L. Ma, H.Y. Chu, M.L. Wang, et al., Cancer Sci. 103 (2012) 1215–1220.
doi: 10.1111/j.1349-7006.2012.02290.x
S.C. Liu, H.W. Wu, J.H. Jiang, G.L. Shen, R.Q. Yu, Anal. Methods 5 (2013) 164–168.
doi: 10.1039/C2AY26018B
V.T. Nguyen, D.V. Le, C. Nie, et al., Talanta 100 (2012) 303–307.
doi: 10.1016/j.talanta.2012.07.065
F. Yuan, H.M. Zhao, M. Liu, X. Quan, Biosens. Bioelectron. 68 (2015) 7–13.
doi: 10.1016/j.bios.2014.12.048
C. Li, Y. Long, B. Liu, D. Xiang, H.Z. Zhu, Anal. Chim. Acta 819 (2014) 71–77.
doi: 10.1016/j.aca.2014.02.002
Z. Wang, Y. Li, L.J. Li, et al., Chem. Commun. 51 (2015) 13373–13376.
doi: 10.1039/C5CC04759E
C.Y. Lee, K.S. Park, H.G. Park, Biosens. Bioelectron. 98 (2017) 210–214.
doi: 10.1016/j.bios.2017.06.052
Y.P. Wu, X.Q. Yang, B.T. Zhang, L.H. Guo, Biosens. Bioelectron. 69 (2015) 235–240.
Z.Y. Liu, W.J. Qi, G.B. Xu, Chem. Soc. Rev. 44 (2015) 3117–3142.
doi: 10.1039/C5CS00086F
Z.X. Shi, G.K. Li, Y.F. Hu, Chinese Chem. Lett. 30 (2019) 1600–1606.
doi: 10.1016/j.cclet.2019.04.066
K. Mullis, F. Faloona, S. Scharf, et al., Cold Spring Harb. Symp. Quant. Biol. 51 (1986) 263–273.
doi: 10.1101/SQB.1986.051.01.032
T. Squillaro, M. Finicelli, N. Alessio, et al., J. Mol. Med. 97 (2019) 991–1001.
doi: 10.1007/s00109-019-01788-8
C. Kerr, P.D. Sadowski, J. Biol. Chem. 247 (1972) 305–310.
doi: 10.1016/S0021-9258(19)45790-6
L. Cui, Z. Zhu, N.H. Lin, et al., Chem. Commun. 50 (2014) 1576–1578.
doi: 10.1039/C3CC48707E
C.H. Chen, D.M. Zhou, H. Tang, M.F. Liang, J.H. Jiang, Chem. Commun. 49 (2013) 5874–5876.
doi: 10.1039/c3cc41700j
D.J. Hosfield, Y. Guan, B.J. Haas, R.P. Cunningham, J.A. Tainer, Cell 98 (1999) 397–408.
doi: 10.1016/S0092-8674(00)81968-6
H.G. Zhang, F.Y. Li, H.L. Chen, et al., Sensor Actuat: B: Chem. 207 (2015) 748–755.
doi: 10.1016/j.snb.2014.11.007
X.J. Liu, M.Q. Chen, T. Hou, et al., Biosens. Bioelectron. 54 (2014) 598–602.
doi: 10.1016/j.bios.2013.11.062
J.D. Fowler, Z. Suo, Chem. Rev. 106 (2006) 2092–2110.
doi: 10.1021/cr040445w
L.L. Wang, H.G. Zhang, Y. Xie, et al., Talanta 194 (2019) 846–851.
doi: 10.1016/j.talanta.2018.10.083
G.T. Walker, M.C. Little, J.G. Nadeau, D.D. Shank, P. Natl. Acad. Sci. U. S. A. 89 (1992) 392–396.
doi: 10.1073/pnas.89.1.392
J. Van Ness, L.K. Van Ness, D.J. Galas, P. Natl. Acad. Sci. U. S. A. 100 (2003) 4504–4509.
doi: 10.1073/pnas.0730811100
H.G. Zhang, F.Y. Li, L.L. Wang, et al., Talanta 220 (2020) 121422–121429.
doi: 10.1016/j.talanta.2020.121422
P. Liu, X.H. Yang, Q. Wang, et al., Chinese Chem. Lett. 25 (2014) 1047–1051.
doi: 10.1016/j.cclet.2014.05.002
M.M. Ali, F. Li, Z.Q. Zhang, et al., Chem. Soc. Rev. 43 (2014) 3324–3341.
doi: 10.1039/c3cs60439j
L.L. Zhang, J.J. Zhao, J.H. Jiang, R.Q. Yu, Chem. Commun. 48 (2012) 8820–8822.
doi: 10.1039/c2cc34531e
L.J. Wang, Z.Y. Wang, Q.Y. Zhang, B. Tang, C.Y. Zhang, Chem. Commun. 53 (2017) 3878–3881.
doi: 10.1039/C7CC00946A
S. Lin, T.S. Kang, L.H. Lu, et al., Biosens. Bioelectron. 86 (2016) 849–857.
doi: 10.1016/j.bios.2016.07.082
X.J. Kong, S. Wu, Y. Cen, R.Q. Yu, X. Chu, Biosens. Bioelectron. 79 (2016) 679–684.
Y.S. Wu, P. Yan, X.W. Xu, W. Jiang, Analyst 141 (2016) 1789–1795.
doi: 10.1039/C5AN02483H
J. Song, F. Yin, X. Li, et al., Analyst 143 (2018) 1593–1598.
doi: 10.1039/C7AN02032E
J.F. Wang, Y. Wang, S. Liu, et al., Analyst 143 (2018) 3951–3958.
doi: 10.1039/C8AN00716K
P.P. Zhang, L. Wang, H.Y. Zhao, X.W. Xu, W. Jiang, Anal. Chim. Acta 1001 (2018) 119–124.
doi: 10.1016/j.aca.2017.11.036
H.G. Zhang, L.L. Wang, Y. Xie, et al., Analyst 144 (2019) 3064–3071.
doi: 10.1039/C9AN00200F
C.C. Li, H.Y. Chen, J. Hu, C.Y. Zhang, Chem. Sci. 11 (2020) 5724–5734.
doi: 10.1039/D0SC01652G
Y. Zhang, C.C. Li, B. Tang, C.Y. Zhang, Anal. Chem. 89 (2017) 7684–7692.
doi: 10.1021/acs.analchem.7b01655
C.C. Li, Y. Zhang, B. Tang, C.Y. Zhang, Chem. Commun. 54 (2018) 5839–5842.
doi: 10.1039/C8CC01695J
J. Hu, M.H. Liu, Y. Li, B. Tang, C.Y. Zhang, Chem. Sci. 9 (2018) 712–720.
doi: 10.1039/C7SC04296E
F. Chen, M. Bai, K. Cao, et al., Adv. Funct. Mater. 27 (2017) 1702748–1702757.
doi: 10.1002/adfm.201702748
N. Tomita, Y. Mori, H. Kanda, T. Notomi, Nat. Protoc. 3 (2008) 877–882.
doi: 10.1038/nprot.2008.57
L.J. Wang, Y.Y. Lu, C.Y. Zhang, Chem. Sci. 11 (2020) 587–595.
doi: 10.1039/C9SC04738G
F.C. Simmel, B. Yurke, H.R. Singh, Chem. Rev. 119 (2019) 6326–6369.
doi: 10.1021/acs.chemrev.8b00580
Y.W. Lu, H. Zhao, G.C. Fan, X.L. Luo, Biosens. Bioelectron. 142 (2019) 111569–111577.
doi: 10.1016/j.bios.2019.111569
Y.S. Wu, L. Wang, J. Zhu, W. Jiang, Biosens. Bioelectron. 68 (2015) 654–659.
doi: 10.1016/j.bios.2015.01.069
R.H. Ren, K. Shi, J.M. Yang, R. Yuan, Y. Xiang, Sensor Actuat. B: Chem., 258 (2018) 783–788.
doi: 10.1016/j.snb.2017.11.164
X.W. Xu, P.P. Zhang, R.Y. Zhang, N. Zhang, W. Jiang, Chem. Commun. 55 (2019) 6026–6029.
doi: 10.1039/C9CC01912J
Q. Xi, J.J. Li, W.F. Du, R.Q. Yu, J.H. Jiang, Analyst 141 (2016) 96–99.
doi: 10.1039/C5AN02255J
X.W. Xu, L. Wang, Y.S. Wu, W. Jiang, Analyst 142 (2017) 4655–4660.
doi: 10.1039/C7AN01666B
J. Wang, M. Pan, J. Wei, X.Q. Liu, F.A. Wang, Chem. Commun. 53 (2017) 12878–12881.
doi: 10.1039/C7CC07057H
W.Q. Bai, Y.Y. Wei, Y.C. Zhang, L. Bao, Y. Li, Anal. Chim. Acta 1061 (2019) 101–109.
doi: 10.1016/j.aca.2019.01.053
D.W. Yang, Q. Mei, Y.G. Tang, P. Miao, Electrochem. Commun. 103 (2019) 37–41.
doi: 10.1016/j.elecom.2019.05.006
Y. Kim, Y. Park, C.Y. Lee, H.G. Park, Biotechnol. J. 15 (2020) 1900420–1900425.
doi: 10.1002/biot.201900420
R.M. Dirks, N.A. Pierce, P. Natl. Acad. Sci. U. S. A. 101 (2004) 15275–15278.
doi: 10.1073/pnas.0407024101
S. Bi, S.Z. Yue, S.S. Zhang, Chem. Soc. Rev. 46 (2017) 4281–4298.
doi: 10.1039/C7CS00055C
P. Yin, H.M.T. Choi, C.R. Calvert, N.A. Pierce, Nature 451 (2008) 318–322.
doi: 10.1038/nature06451
J.M. Liu, Y. Zhang, H.B. Xie, et al., Small 15 (2019) 1902989–1903006.
doi: 10.1002/smll.201902989
S. Kotani, W.L. Hughes, J. Am. Chem. Soc. 139 (2017) 6363–6368.
doi: 10.1021/jacs.7b00530
S.D. Mason, Y.A. Tang, Y.Y. Li, X.Y. Xie, F. Li, Trac-Trend Anal. Chem. 107 (2018) 212–221.
doi: 10.1016/j.trac.2018.08.015
R.A. Sperling, P. Rivera gil, F. Zhang, M. Zanella, W.J. Parak, Chem. Soc. Rev. 37 (2008) 1896–1908.
doi: 10.1039/b712170a
D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Chem. Soc. Rev. 42 (2013) 2824–2860.
doi: 10.1039/C2CS35335K
X.H. Gao, Y.Y. Cui, R.M. Levenson, L.W.K. Chung, S.M. Nie, Nat. Biotechnol. 22 (2004) 969–976.
doi: 10.1038/nbt994
J.P. Wilcoxon, B.L. Abrams, Chem. Soc. Rev. 35 (2006) 1162–1194.
doi: 10.1039/b517312b
J.P. Lei, H.X. Ju, Chem. Soc. Rev. 41 (2012) 2122–2134.
doi: 10.1039/c1cs15274b
L.J. Wang, F. Ma, B. Tang, C.Y. Zhang, Anal. Chem. 88 (2016) 7523–7529.
doi: 10.1021/acs.analchem.6b00664
H.Y. Liu, Y.B. Lou, F. Zhou, et al., Biosens. Bioelectron. 71 (2015) 249–255.
doi: 10.1016/j.bios.2015.04.048
T.T. Liu, L. Cui, D.K. Li, et al., Biosens. Bioelectron. 154 (2020) 112014–112022.
doi: 10.1016/j.bios.2020.112014
C.C. Li, W.X. Liu, J. Hu, C.Y. Zhang, Chem. Sci. 10 (2019) 8675–8684.
doi: 10.1039/C9SC02137J
M.H. Zhao, L. Cui, C.Y. Zhang, Chem. Commun. 56 (2020) 2971–2974.
doi: 10.1039/C9CC09999A
J. Zhou, Y. Yang, C.Y. Zhang, Chem. Rev. 115 (2015) 11669–11717.
doi: 10.1021/acs.chemrev.5b00049
N. Hildebrandt, C.M. Spillmann, W.R. Algar, et al., Chem. Rev. 117 (2017) 536–711.
doi: 10.1021/acs.chemrev.6b00030
Q.S. Si, W.Q. Guo, H.Z. Wang, B.H. Liu, N.Q. Ren, Chin. Chem. Lett. 31 (2020) 2556–2566.
doi: 10.1016/j.cclet.2020.08.036
S. Zhang, X. Pei, H.L. Gao, S. Chen, J. Wang, Chin. Chem. Lett. 31 (2020) 1060–1070.
doi: 10.1016/j.cclet.2019.11.036
Z.C. Hu, B.J. Deibert, J. Li, Chem. Soc. Rev. 43 (2014) 5815–5840.
Chang Liu , Tao Wu , Lijiao Deng , Xuzi Li , Xin Fu , Shuzhen Liao , Wenjie Ma , Guoqiang Zou , Hai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
Yanqi Wu , Yuhong Guan , Peilin Huang , Hui Chen , Liping Bai , Zhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308
Qinghong Pan , Huafang Zhang , Qiaoling Liu , Donghong Huang , Da-Peng Yang , Tianjia Jiang , Shuyang Sun , Xiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Yang Qin , Jiangtian Li , Xuehao Zhang , Kaixuan Wan , Heao Zhang , Feiyang Huang , Limei Wang , Hongxun Wang , Longjie Li , Xianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Zhe-Han Yang , Jie Yin , Lei Xin , Yuanfang Li , Yijie Huang , Ruo Yuan , Ying Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558
Jian Han , Li-Li Zeng , Qin-Yu Fei , Yan-Xiang Ge , Rong-Hui Huang , Fen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Xu Luo , Jinwen Xiao , Qiming Yang , Xiaolong Lu , Qianjun Huang , Xiaojun Ai , Bo Li , Li Sun , Long Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416