Nanofluidics for sub-single cellular studies: Nascent progress, critical technologies, and future perspectives
-
* Corresponding author.
E-mail address: xu@chemeng.osakafu-u.ac.jp (Y. Xu).
Citation: Jinbin Yang, Yan Xu. Nanofluidics for sub-single cellular studies: Nascent progress, critical technologies, and future perspectives[J]. Chinese Chemical Letters, ;2022, 33(6): 2799-2806. doi: 10.1016/j.cclet.2021.09.066
S.A. Joosse, T.M. Gorges, K. Pantel, EMBO Mol. Med. 7 (2015) 1–11.
doi: 10.15252/emmm.201303698
B.J. Green, T. Saberi Safaei, A. Mepham, et al., Angew. Chem. Int. Ed. 55 (2016) 1252–1265.
doi: 10.1002/anie.201505100
V. Živanović, G. Semini, M. Laue, et al., Anal. Chem. 90 (2018) 8154–8161.
doi: 10.1021/acs.analchem.8b01451
A. Ocampo, P. Reddy, J.C.I. Belmonte, Trends Mol. Med. 22 (2016) 725–738.
doi: 10.1016/j.molmed.2016.06.005
E. Carrasco-Garcia, M. García-Puga, S. Arevalo, A. Matheu, Ther. Adv. Med. Oncol. 10 (2018) 1–15.
S.O. Kelley, Acc. Chem. Res. 50 (2017) 503–507.
doi: 10.1021/acs.accounts.6b00497
M. Bentley, G. Banker, Nat. Rev. Neurosci. 17 (2016) 611–622.
doi: 10.1038/nrn.2016.100
I. Sturmlechner, M. Durik, C.J. Sieben, D.J. Baker, J.M. Van Deursen, Nat. Rev. Nephrol. 13 (2017) 77–89.
doi: 10.1038/nrneph.2016.183
M.B. Stone, S.A. Shelby, S.L. Veatch, Chem. Rev. 117 (2017) 7457–7477.
doi: 10.1021/acs.chemrev.6b00716
L.M. Almassalha, G.M. Bauer, J.E. Chandler, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) E6372–E6381.
doi: 10.1073/pnas.1521269113
H.Y. Lee, N. Atlasevich, C. Granzotto, et al., Anal. Methods. 7 (2015) 187–196.
doi: 10.1039/C4AY01919A
E. Aksamitiene, J.B. Hoek, A. Kiyatkin, West. Blotting. 1312 (2015) 197–226.
doi: 10.1007/978-1-4939-2694-7_23
K.A. Yamauchi, A.E. Herr, Microsystems Nanoeng. 3 (2017) 16079.
doi: 10.1038/micronano.2016.79
P.J. Thul, L. Akesson, M. Wiking, et al., Science356 (2017) eaal3321.
doi: 10.1126/science.aal3321
T.J. Burns, A.P. Frei, P.F. Gherardini, et al., Cytom. Part A91A (2017) 180–189.
doi: 10.1002/cyto.a.23054
C.L. Kohnhorst, D.L. Schmitt, A. Sundaram, S. An, Biochim. Biophys. Acta - Proteins Proteom. 1864 (2016) 77–84.
doi: 10.1016/j.bbapap.2015.05.014
D.A. Lawson, N.R. Bhakta, K. Kessenbrock, et al., Nature526 (2015) 131–135.
doi: 10.1038/nature15260
A. Reece, B. Xia, Z. Jiang, et al., Curr. Opin. Biotechnol. 40 (2016) 90–96.
S. Hosic, S.K. Murthy, A.N. Koppes, Anal. Chem. 88 (2016) 354–380.
doi: 10.1021/acs.analchem.5b04077
Q. Huang, S. Mao, M. Khan, J.M. Lin, Analyst144 (2019) 808–823.
doi: 10.1039/C8AN01079J
E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature. 507 (2014) 181–189.
doi: 10.1038/nature13118
A.B. Theberge, F. Courtois, Y. Schaerli, et al., Angew. Chem. Int. Ed. 49 (2010) 5846–5868.
doi: 10.1002/anie.200906653
B. Xiong, K. Ren, Y. Shu, et al., Adv. Mater. 26 (2014) 5525–5532.
doi: 10.1002/adma.201305348
Y. Xu, K. Jang, T. Yamashita, et al., Anal. Bioanal. Chem. 402 (2012) 99–107.
doi: 10.1007/s00216-011-5296-5
L. Cao, F. Xiao, Y. Feng, et al., Adv. Funct. Mater. 27 (2017).
doi: 10.1002/adfm.201604302
A. Syed, L. Mangano, P. Mao, J. Han, Y.A. Song, Lab Chip14 (2014) 4455–4460.
doi: 10.1039/C4LC00895B
A.C. Louër, A. Plecis, A. Pallandre, et al., Anal. Chem. 85 (2013) 7948–7956.
doi: 10.1021/ac4016159
S.J. Kim, Y.C. Wang, J.H. Lee, H. Jang, J. Han, Phys. Rev. Lett. 99 (2007) 1–4.
S.J. Kim, Y.A. Song, J. Han, Chem. Soc. Rev. 39 (2010) 912–922.
doi: 10.1039/b822556g
T. Gamble, K. Decker, T.S. Plett, et al., J. Phys. Chem. C. 118 (2014) 9809–9819.
doi: 10.1021/jp501492g
M. Zhang, X. Hou, J. Wang, et al., Adv. Mater. 24 (2012) 2424–2428.
doi: 10.1002/adma.201104536
J.M. Perry, K. Zhou, Z.D. Harms, S.C. Jacobson, ACS Nano. 4 (2010) 3897–3902.
doi: 10.1021/nn100692z
I. Vlassiouk, Z.S. Siwy, Nano Lett. 7 (2007) 552–556.
doi: 10.1021/nl062924b
Y. Xu, B. Xu, Small11 (2015) 6165–6171.
doi: 10.1002/smll.201502125
A. Hibara, T. Saito, H.B. Kim, et al., Anal. Chem. 74 (2002) 6170–6176.
doi: 10.1021/ac025808b
N.R. Tas, J. Haneveld, H. V Jansen, M. Elwenspoek, A. Van Den Berg, Appl. Phys. Lett. 85 (2004) 3274–3276.
doi: 10.1063/1.1804602
T. Tsukahara, A. Hibara, Y. Ikeda, T. Kitamori, Angew. Chem. Int. Ed. 46 (2007) 1180–1183.
doi: 10.1002/anie.200604502
S. Liu, Q. Pu, L. Gao, C. Korzeniewski, C. Matzke, Nano Lett. 5 (2005) 1389–1393.
doi: 10.1021/nl050712t
W. Sparreboom, A. Van Den Berg, J.C.T. Eijkel, Nat. Nanotechnol. 4 (2009) 713–720.
doi: 10.1038/nnano.2009.332
M. Napoli, J.C.T. Eijkel, S. Pennathur, Lab Chip10 (2010) 957–985.
doi: 10.1039/b917759k
D.G. Haywood, A. Saha-Shah, L.A. Baker, S.C. Jacobson, Anal. Chem. 87 (2015) 172–187.
doi: 10.1021/ac504180h
K. Mawatari, Y. Kazoe, H. Shimizu, Y. Pihosh, T. Kitamori, Anal. Chem. 86 (2014) 4068–4077.
doi: 10.1021/ac4026303
J. Gao, Y. Feng, W. Guo, L. Jiang, Chem. Soc. Rev. 46 (2017) 5400–5424.
doi: 10.1039/C7CS00369B
Y. Xu, Adv. Mater. 30 (2018) 1702419.
doi: 10.1002/adma.201702419
L. Bocquet, Nat. Mater. 19 (2020) 254–256.
doi: 10.1038/s41563-020-0625-8
Nat. Mater. 19 (2020) 253.
doi: 10.1038/s41563-020-0633-8
S. Faez, M. Orrit, Y. Lahini, et al., ACS Nano9 (2015) 12349–12357.
doi: 10.1021/acsnano.5b05646
Q. Xie, F. Xin, H.G. Park, C. Duan, Nanoscale8 (2016) 19527–19535.
doi: 10.1039/C6NR06977K
A.R. Kneller, D.G. Haywood, S.C. Jacobson, Anal. Chem. 88 (2016) 6390–6394.
doi: 10.1021/acs.analchem.6b00839
W. Cao, J. Wang, M. Ma, Microfluid. Nanofluidics22 (2018) 1–10.
doi: 10.1007/s10404-017-2014-4
Y. He, M. Tsutsui, C. Fan, M. Taniguchi, T. Kawai, ACS Nano5 (2011) 5509–5518.
doi: 10.1021/nn201883b
K. Jayant, J.J. Hirtz, I.J. La Plante, et al., Nat. Nanotechnol. 12 (2017) 335–342.
doi: 10.1038/nnano.2016.268
T.S. Sazanova, K. V. Otvagina, S.S. Kryuchkov, et al., Langmuir36 (2020) 12911–12921.
doi: 10.1021/acs.langmuir.0c02140
K. Xiao, P. Giusto, L. Wen, L. Jiang, M. Antonietti, Angew. Chem. Int. Ed. 57 (2018) 10123–10126.
doi: 10.1002/anie.201804299
T.H.H. Le, H. Shimizu, K. Morikawa, Micromachines 11 (2020) 885.
doi: 10.3390/mi11100885
K. Mawatari, H. Koreeda, K. Ohara, et al., Lab Chip. 18 (2018) 1259–1264.
doi: 10.1039/C8LC00077H
R. Marie, A. Kristensen, J. Biophotonics5 (2012) 673–686.
doi: 10.1002/jbio.201200050
Z.D. Harms, L. Selzer, A. Zlotnick, S.C. Jacobson, ACS Nano9 (2015) 9087–9096.
doi: 10.1021/acsnano.5b03231
K. Shirai, K. Mawatari, R. Ohta, H. Shimizu, T. Kitamori, Analyst143 (2018) 943–948.
doi: 10.1039/c7an01144j
A. Piruska, M. Gong, J. V Sweedler, P.W. Bohn, Chem. Soc. Rev. 39 (2010) 1060–1072.
doi: 10.1039/B900409M
L. Bocquet, P. Tabeling, Lab Chip14 (2014) 3143–3158.
doi: 10.1039/C4LC00325J
L. Rassaei, K. Mathwig, S. Kang, H.A. Heering, S.G. Lemay, ACS Nano8 (2014) 8278–8284.
doi: 10.1021/nn502678t
L. Putallaz, P. van den Bogaard, P. Laub, F. Rebeaud, J. Nanomed. Nanotechnol. 10 (2019) 1–7.
I. Boussouar, Q. Chen, X. Chen, et al., Anal. Chem. 89 (2017) 1110–1116.
doi: 10.1021/acs.analchem.6b02682
I. Fernandez-Cuesta, M.M. West, E. Montinaro, A. Schwartzberg, S. Cabrini, Lab Chip19 (2019) 2394–2403.
doi: 10.1039/c9lc00186g
K. Xiao, L. Jiang, M. Antonietti, Joule3 (2019) 2364–2380.
doi: 10.1016/j.joule.2019.09.005
J. Ko, N. Bhagwat, S.S. Yee, et al., ACS Nano11 (2017) 11182–11193.
doi: 10.1021/acsnano.7b05503
Z. Nizamudeen, R. Markus, R. Lodge, et al., Biochim. Biophys. Acta - Mol. Cell Res. 1865 (2018) 1891–1900.
doi: 10.1016/j.bbamcr.2018.09.008
G. Bulbul, G. Chaves, J. Olivier, R. Ozel, N. Pourmand, Cells7 (2018) 55.
doi: 10.3390/cells7060055
K. Kant, J. Yoo, S. Amos, et al., RSC Adv. 5 (2015) 23886–23891.
doi: 10.1039/C5RA01336D
L. Lin, K. Mawatari, K. Morikawa, et al., Analyst142 (2017) 1689–1696.
doi: 10.1039/C7AN00220C
K. Zand, T. Pham, A. Davila, D.C. Wallace, P.J. Burke, Anal. Chem. 85 (2013) 6018–6025.
doi: 10.1021/ac4010088
M. Yu, Y. Hou, R. Song, X. Xu, S. Yao, Small14 (2018) 1–8.
doi: 10.1155/2018/4374087
P.E. Boukany, A. Morss, W.C. Liao, et al., Nat. Nanotechnol. 6 (2011) 747–754.
doi: 10.1038/nnano.2011.164
P.E. Boukany, Y. Wu, X. Zhao, et al., Adv. Healthc. Mater. 3 (2014) 682–689.
doi: 10.1002/adhm.201300213
J.L. Perry, S.G. Kandlikar, Microfluid. Nanofluidics2 (2006) 185–193.
doi: 10.1007/s10404-005-0068-1
D. Mijatovic, J.C.T. Eijkel, A. Van Den Berg, Lab Chip5 (2005) 492–500.
doi: 10.1039/b416951d
Y. Chen, Appl. Phys. A Mater. Sci. Process. 121 (2015) 451–465.
doi: 10.1007/s00339-015-9071-x
X. Chen, L. Zhang, Sensors Actuators B: Chem. 254 (2018) 648–659.
doi: 10.1016/j.snb.2017.07.139
P.W. Doll, A. Al-Ahmad, A. Bacher, et al., Mater. Res. Express. 6 (2019) 65402.
doi: 10.1088/2053-1591/ab0a16
M. Fuest, C. Boone, K.K. Rangharajan, A.T. Conlisk, S. Prakash, Nano Lett. 15 (2015) 2365–2371.
doi: 10.1021/nl5046236
A.A. Tseng, K. Chen, C.D. Chen, K.J. Ma, IEEE Trans. Electron. Packag. Manuf. 26 (2003) 141–149.
doi: 10.1109/TEPM.2003.817714
L.D. Menard, J.M. Ramsey, Nano Lett. 11 (2011) 512–517.
doi: 10.1021/nl103369g
M.C. Traub, W. Longsine, V.N. Truskett, Annu. Rev. Chem. Biomol. Eng. 7 (2016) 583–604.
doi: 10.1146/annurev-chembioeng-080615-034635
F. Persson, J. Fritzsche, K.U. Mir, et al., Nano Lett. 12 (2012) 2260–5.
doi: 10.1021/nl204535h
K. Frykholm, M. Alizadehheidari, J. Fritzsche, et al., Small. 10 (2014) 884–887.
doi: 10.1002/smll.201302028
L. Galla, A.J. Meyer, A. Spiering, et al., Nano Lett. 14 (2014) 4176–4182.
doi: 10.1021/nl501909t
K. Ando, M. Tanabe, K. Morigaki, Langmuir. 32 (2016) 7958–7964.
doi: 10.1021/acs.langmuir.6b01405
M. Tanabe, K. Ando, R. Komatsu, K. Morigaki, Small14 (2018) 1–10.
Y. Kazoe, K. Mawatari, L. Li, et al., J. Phys. Chem. Lett. 11 (2020) 5756–5762.
doi: 10.1021/acs.jpclett.0c01084
Y. Xu, N. Matsumoto, RSC Adv. 5 (2015) 50638–50643.
doi: 10.1039/C5RA06306J
Y. Xu, N. Matsumoto, Q. Wu, Y. Shimatani, H. Kawata, Lab Chip15 (2015) 1989–1993.
doi: 10.1039/C5LC00190K
T. Nakao, Y. Kazoe, K. Morikawa, et al., Analyst145 (2020) 2669–2675.
doi: 10.1039/c9an02258a
A.K. Au, H. Lai, B.R. Utela, A. Folch, Micromachines 2 (2011) 179–220.
doi: 10.3390/mi2020179
Y.S. Lee, N. Bhattacharjee, A. Folch, Lab Chip18 (2018) 1207–1214.
doi: 10.1039/C8LC00001H
K. Mawatari, S. Kubota, Y. Xu, et al., Anal. Chem. 84 (2012) 10812–10816.
doi: 10.1021/ac3028905
G. Fu, Z. Zheng, X. Li, Y. Sun, H. Chen, Lab Chip15 (2015) 1004–1008.
doi: 10.1039/C4LC01241K
Y. Xu, M. Shinomiya, A. Harada, Adv. Mater. 28 (2016) 2209–2216.
doi: 10.1002/adma.201505132
Y. Kazoe, Y. Pihosh, H. Takahashi, et al., Lab Chip19 (2019) 1686–1694.
doi: 10.1039/c8lc01340c
S. Furukawa, K. Mawatari, Y. Tsuyama, K. Morikawa, T. Kitamori, Microfluid. Nanofluidics. 25 (2021) 1–8.
doi: 10.1007/s10404-020-02401-y
V. Müller, F. Westerlund, Lab Chip17 (2017) 579–590.
doi: 10.1039/C6LC01439A
C. Wang, Y. Wang, Y. Zhou, Z.Q. Wu, X.H. Xia, Anal. Bioanal. Chem. 411 (2019) 4007–4016.
doi: 10.1007/s00216-019-01756-8
Y. Tsuyama, K. Mawatari, Anal. Chem. 91 (2019) 9741–9746.
doi: 10.1021/acs.analchem.9b01334
R. Friedrich, S. Block, M. Alizadehheidari, et al., Lab Chip17 (2017) 830–841.
doi: 10.1039/C6LC01302C
P. Pungetmongkol, T. Yamamoto, Micromachines 10 (2019) 189.
doi: 10.3390/mi10030189
Y. Xu, C. Wang, Y. Dong, et al., Anal. Bioanal. Chem. 402 (2012) 1011–1018.
doi: 10.1007/s00216-011-5574-2
Y. Xu, C. Wang, L. Li, et al., Lab Chip13 (2013) 1048–1052.
doi: 10.1039/c3lc41345d
R. Ohta, K. Mawatari, T. Takeuchi, K. Morikawa, T. Kitamori, Biomicrofluidics13 (2019) 24104.
doi: 10.1063/1.5087003
C. Wang, T. Wang, K. Mawatari, T. Kitamori, J. Electrochem. Soc. 165 (2018) B184–B186.
doi: 10.1149/2.0101805jes
Y. Xu, Q. Wu, Y. Shimatani, K. Yamaguchi, Lab Chip15 (2015) 3856–3861.
doi: 10.1039/C5LC00604J
H. Kamai, Y. Xu, Micromachines 12 (2021) 775.
doi: 10.3390/mi12070775
H. Ishibashi, O. Ishibashi, A. Horikawa, A. Hayashi, Y. Xu, Separation of single exosomes utilizing a composite nanofluidic structure, Proc. Micro Total Anal. Syst., Basel, 2019, pp 6–7.
H. Kawagishi, S. Kawamata, Y. Xu, Nano Lett. 21 (2021) 10555-10561.
doi: 10.1021/acs.nanolett.1c02871
S. Nishioka, T. Kishimoto, C. Hosokawa, et al., Creation of nanoparticle arrays by integration of nanofluidics and optical forces, Proc. Micro Total Anal. Syst., 2018, Kaohsiung, pp 416–418.
J. Yang, H. Kamai, Y. Wang, Y. Xu, Aptamer-based nanofluidics for the molecular detection in ultra-small volume, Proc. Micro Total Anal. Syst., 2020, Online meeting, pp 354–355.
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Xinyi Luo , Ke Wang , Yingying Xue , Xiaobao Cao , Jianhua Zhou , Jiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Yukai Tong , Zhijun Wu , Bo Zhou , Min Hu , Anpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376
Dong Lv , Xuelei Liu , Wei Li , Qiang Zhang , Xinhong Yu , Yanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Bei Li , Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193
Fengyu Zhang , Yali Liang , Zhangran Ye , Lei Deng , Yunna Guo , Ping Qiu , Peng Jia , Qiaobao Zhang , Liqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Yifei Zhang , Yuncong Xue , Laiwei Gao , Rui Liao , Feng Wang , Fei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Wangyan Hu , Ke Li , Xiangnan Dou , Ning Li , Xiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806
Shuyan ZHAO . Field-induced CoⅡ single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400