Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries
-
* Corresponding author.
E-mail address: wuxiang05@sut.edu.cn (X. Wu).
Citation: Ying Liu, Xiang Wu. Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries[J]. Chinese Chemical Letters, ;2022, 33(3): 1236-1244. doi: 10.1016/j.cclet.2021.08.081
Y. Gogotsi, P. Simon, Science 334 (2011) 917-918.
doi: 10.1126/science.1213003
D.P. Zhao, M.Z. Dai, Y. Zhao, et al., Nano Energy 72 (2020) 104715.
doi: 10.1016/j.nanoen.2020.104715
L.J. Su, L.Y. Liu, Y. Wang, Y.L. Lu, X.B. Yan, Chin. Chem. Lett. 31 (2020) 2358-2364.
doi: 10.1016/j.cclet.2020.03.014
X. Wu, S.Y. Yao, Nano Energy 42 (2017) 143-150.
doi: 10.1016/j.nanoen.2017.10.058
J.M. Tarascon, M. Armand, Nature 414 (2001) 359-367.
doi: 10.1038/35104644
C. Liu, X. Wu, B. Wang, Chem. Eng. J. 392 (2020) 123651.
doi: 10.1016/j.cej.2019.123651
H. Yuan, L. Kong, T. Li, Q. Zhang, Chin. Chem. Lett. 28 (2017) 2180-2194.
doi: 10.1016/j.cclet.2017.11.038
M. Song, H. Tan, D. Chao, H.J. Fan, Adv. Funct. Mater. 28 (2018) 1802564.
doi: 10.1002/adfm.201802564
Y.Q. Qi, Y. Yang, Q. Hou, et al., Chin. Chem. Lett. 32 (2021) 1117-1120.
doi: 10.1016/j.cclet.2020.08.030
W. Fang, R. Jiang, H. Zheng, et al., Rare Metals 40 (2020) 433-439.
G.A. Elia, K. Marquardt, K. Hoeppner, et al., Adv. Mater. 28 (2016) 7564-7579.
doi: 10.1002/adma.201601357
Z. Yan, Q.W. Yang, Q. Wang, J. Ma, Chin. Chem. Lett. 31 (2020) 583-588.
doi: 10.1016/j.cclet.2019.11.002
Y. Song, S. Jiao, J. Tu, et al., J. Mater. Chem. A 5 (2017) 1282-1291.
doi: 10.1039/C6TA09829K
Y. Liu, P.F. Hu, H.Q. Liu, X. Wu, C.Y. Zhi, Mater. Today Energy 17 (2020) 100431.
doi: 10.1016/j.mtener.2020.100431
B.Y. Tang, L.T. Shan, S.Q. Liang, J. Zhou, Energy Environ. Sci. 12 (2019) 3288-3304.
doi: 10.1039/c9ee02526j
Y. Liu, X. Wu, J. Energy Chem. 56 (2021) 223-237.
doi: 10.1016/j.jechem.2020.08.016
W. Sun, F. Wang, S. Hou, et al., J Am. Chem. Soc. 139 (2017) 9775-9778.
doi: 10.1021/jacs.7b04471
S. Bi, Y. Wu, A. Cao, et al., Mater. Today Energy (2020) 18.
doi: 10.1182/blood-2020-143433
Y. Zhang, S. Deng, Y. Li, et al., Energy Storage Mater. 29 (2020) 52-59.
doi: 10.1016/j.ensm.2020.04.003
Y. Liu, X. Wu, Nano Energy 86 (2021) 106124.
doi: 10.1016/j.nanoen.2021.106124
Q. Li, X. Rui, D. Chen, et al., Nano Micro. Lett. 12 (2020) 67.
doi: 10.1109/icccbda49378.2020.9095625
F. Liu, Z. Chen, G. Fang, et al., Nano-Micro lett. 11 (2019) 25.
doi: 10.7153/mia-2019-22-02
D. Chen, X. Rui, Q. Zhang, et al., Nano Energy 60 (2019) 171-178.
doi: 10.1016/j.nanoen.2019.03.034
Q. Yang, F. Mo, Z. Liu, et al., Adv. Mater. 31 (2019) e1901521.
G. Kasiri, J. Glenneberg, A. Bani Hashemi, R. Kun, F. La Mantia, Energy Storage Mater. 19 (2019) 360-369.
doi: 10.1016/j.ensm.2019.03.006
P. Hu, T. Zhu, X. Wang, et al., Nano Energy 58 (2019) 492-498.
doi: 10.1016/j.nanoen.2019.01.068
V. Verma, S. Kumar, W. Manalastas, et al., ACS Appl. Energy Mater. 2 (2019) 8667-8674.
doi: 10.1021/acsaem.9b01632
T. Yamamoto, T. Shoji, Inorg. Chim. Acta 117 (1986) L27-L28.
doi: 10.1016/S0020-1693(00)82175-1
X. Zeng, J. Hao, Z. Wang, J. Mao, Z. Guo, Energy Storage Mater. 20 (2019) 410-437.
doi: 10.1016/j.ensm.2019.04.022
J. Huang, J. Zeng, K. Zhu, R. Zhang, J. Liu, Nano-Micro Lett. 12 (2020) 110.
doi: 10.1007/s40820-020-00445-x
M.H. Alfaruqi, S. Islam, V. Mathew, et al., Appl. Surf. Sci. 404 (2017) 435-442.
doi: 10.1016/j.apsusc.2017.02.009
B. Jiang, C. Xu, C. Wu, et al., Electrochim. Acta 229 (2017) 422-428.
doi: 10.1016/j.electacta.2017.01.163
D. Xu, B. Li, C. Wei, et al., Electrochim. Acta 133 (2014) 254-261.
doi: 10.1016/j.electacta.2014.04.001
J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Mater. Sci. Eng. R: Rep. 135 (2019) 58-84.
doi: 10.1016/j.mser.2018.10.002
V. Soundharrajan, B. Sambandam, S. Kim, et al., Energy Storage Mater. 28 (2020) 407-417.
doi: 10.1016/j.ensm.2019.12.021
X. Wu, Y. Li, C. Li, et al., J. Power Sources 300 (2015) 453-459.
doi: 10.1016/j.jpowsour.2015.09.096
G. Fang, C. Zhu, M. Chen, et al., Adv. Funct. Mater. 29 (2019) 1808375.
doi: 10.1002/adfm.201808375
W. Liu, X. Zhang, Y. Huang, et al., J. Energy Chem. 56 (2021) 365-373.
doi: 10.1016/j.jechem.2020.07.027
Y. Huang, W. He, P. Zhang, X. Lu, Funct. Mater. Lett. 11 (2018) 1840006.
doi: 10.1142/s1793604718400064
N. Zhang, X. Li, H. Ye, et al., J. Am. Chem. Soc. 138 (2016) 8928-8935.
doi: 10.1021/jacs.6b04629
M. Han, J. Huang, S. Liang, et al., iScience 23 (2020) 100797.
doi: 10.1016/j.isci.2019.100797
Y. Zou, W. Zhang, N. Chen, et al., ACS Nano 13 (2019) 2062-2071.
M.H. Alfaruqi, V. Mathew, J. Gim, et al., Chem. Mater. 27 (2015) 3609-3620.
doi: 10.1021/cm504717p
C. Wang, Y.X. Zeng, X. Xiao, et al., J. Energy Chem. 43 (2020) 182-187.
doi: 10.1088/1674-4527/20/11/182
H.L. Pan, Y.Y. Shao, P.F. Yan, et al., Nat. Energy 1 (2016) 16039.
doi: 10.1038/nenergy.2016.39
B.K. Wu, G.B. Zhang, M.Y. Yan, et al., Small 14 (2018) 1703850.
doi: 10.1002/smll.201703850
G. Liu, H. Huang, R. Bi, et al., J. Mater. Chem. A 7 (2019) 20806-20812.
doi: 10.1039/c9ta08049j
J. Lee, J.B. Ju, W.I. Cho, B.W. Cho, S.H. Oh, Electrochim. Acta 112 (2013) 138-143.
doi: 10.4097/kjae.2013.64.2.138
M. Nakayama, T. Kanaya, J.W. Lee, B.N. Popov, J. Power Sources 179 (2008) 361-366.
doi: 10.1016/j.jpowsour.2007.12.075
A.A. Voskanyan, C.K. Ho, K.Y. Chan, J. Power Sources 421 (2019) 162-168.
doi: 10.1016/j.jpowsour.2019.03.022
M.H. Alfaruqi, J. Gim, S. Kim, et al., Electrochem. Commun. 60 (2015) 121-125.
doi: 10.1016/j.elecom.2015.08.019
Y. Jin, L. Zou, L. Liu, et al., Adv. Mater. 31 (2019) e1900567.
doi: 10.1002/adma.201900567
D. Wang, L. Wang, G. Liang, et al., ACS Nano 13 (2019) 10643-10652.
doi: 10.1021/acsnano.9b04916
H. Zhang, Q. Liu, J. Wang, et al., J. Mater. Chem. A 7 (2019) 22079-22083.
doi: 10.1039/c9ta08418e
Y. Zhong, X. Xu, J.P. Veder, Z. Shao, iScience 23 (2020) 100943.
doi: 10.1016/j.isci.2020.100943
T. Sun, Q. Nian, S. Zheng, J. Shi, Z. Tao, Small 16 (2020) e2000597.
doi: 10.1002/smll.202000597
J. Wang, X. Sun, H. Zhao, et al., J. Phys. Chem. C 123 (2019) 22735-22741.
doi: 10.1021/acs.jpcc.9b05535
W. Xu, Y. Wang, Nano-Micro Lett. 11 (2019) 90.
doi: 10.1007/s40820-019-0322-9
S. Kim, K.W. Nam, S. Lee, et al., Angew. Chem. Int. Ed. 54 (2015) 15094-15099.
doi: 10.1002/anie.201505487
C. Zhu, G. Fang, J. Zhou, et al., J. Mater. Chem. A 6 (2018) 9677-9683.
doi: 10.1039/C8TA01198B
M. Shi, B. Wang, Y. Shen, et al., Chem. Eng. J. 399 (2020) 125627.
doi: 10.1016/j.cej.2020.125627
C. Xie, D. Yan, W. Chen, et al., Mater. Today 31 (2019) 47-68.
doi: 10.1016/j.mattod.2019.05.021
T. Xiong, Y. Zhang, W.S.V. Lee, J. Xue, Adv. Energy Mater. 10 (2020) 2001769.
doi: 10.1002/aenm.202001769
N. Zhang, F. Cheng, Y. Liu, et al., J. Am. Chem. Soc. 138 (2016) 12894-12901.
doi: 10.1021/jacs.6b05958
H. Zhang, J. Wang, Q. Liu, et al., Energy Storage Mater. 21 (2019) 154-161.
doi: 10.1016/j.ensm.2018.12.019
T. Xiong, Z.G. Yu, H. Wu, et al., Adv. Energy Mater. 9 (2019) 1803815.
doi: 10.1002/aenm.201803815
D.L. Chao, W.H. Zhou, C. Ye, et al., Angew. Chem. Int. Ed. 58 (2019) 7823-7828.
doi: 10.1002/anie.201904174
M.H. Alfaruqi, J. Gim, S. Kim, et al., J. Power Sources 288 (2015) 320-327.
doi: 10.1016/j.jpowsour.2015.04.140
C. Zhu, G. Fang, S. Liang, et al., Energy Storage Mater. 24 (2020) 394-401.
doi: 10.1016/j.ensm.2019.07.030
B. Lee, H.R. Seo, H.R. Lee, et al., ChemSusChem 9 (2016) 2948-2956.
doi: 10.1002/cssc.201600702
J. Wang, J.G. Wang, H. Liu, C. Wei, F. Kang, J. Mater. Chem. A 7 (2019) 13727-13735.
doi: 10.1039/c9ta03541a
G. Liang, F. Mo, H. Li, et al., A, Adv. Energy Mater. 9 (2019) 1901838.
doi: 10.1002/aenm.201901838
X. Guo, J. Zhou, C. Bai, et al., Mater. Today Energy 16 (2020) 100396.
doi: 10.1016/j.mtener.2020.100396
X. Gao, H. Wu, W. Li, et al., Small 16 (2020) e1905842.
doi: 10.1002/smll.201905842
J. Huang, Z. Wang, M. Hou, et al., Nat. Commun. 9 (2018) 2906.
doi: 10.1038/s41467-018-04949-4
C. Guo, Q.H. Zhou, H.M. Liu, et al., Electrochim. Acta 324 (2019) 134867.
doi: 10.1016/j.electacta.2019.134867
X.Z. Zhai, J. Qu, S.M. Hao, et al., Nano-Micro Lett. 12 (2020) 56.
doi: 10.1007/s40820-020-0397-3
V. Soundharrajan, B. Sambandam, S. Kim, et al., ACS Energy Lett. 3 (2018) 1998-2004.
doi: 10.1021/acsenergylett.8b01105
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Jingjing Zhang , Lan Ding , Vadim Popkov , Kezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933