Citation: Qian Li, Bodong Kang, Libin Wang, Tao Chen, Yu Zhao, Shilun Feng, Rongjing Li, Hongtian Zhang. Microfluidics embedded with microelectrodes for electrostimulation of neural stem cells proliferation[J]. Chinese Chemical Letters, ;2022, 33(3): 1308-1312. doi: 10.1016/j.cclet.2021.08.006 shu

Microfluidics embedded with microelectrodes for electrostimulation of neural stem cells proliferation

    * Corresponding authors.
    E-mail addresses: chentao@bjut.edu.cn (T. Chen), shilun.feng@mail.sim.ac.cn (S. Feng).
  • Received Date: 26 May 2021
    Revised Date: 5 July 2021
    Accepted Date: 2 August 2021
    Available Online: 8 August 2021

    Fund Project: the Key Scientific and Technological Projects of the Beijing Education Commission KZ201910005009

Figures(5)

  • The regeneration of the injured nerve and recovery of its function have brought attention in the medical field. Electrical stimulation (ES) can enhance the cellular biological behavior and has been widely studied in the treatment of neurological diseases. Microfluidic technology can provide a cell culture platform with the well-controlled environment. Here a novel microfluidic/microelectrode composite microdevice was developed by embedding the microelectrodes to the microfluidic platform, in which microfluidics provided a controlled cell culture platform, and ES promoted the NSCs proliferation. We performed ES on rat neural stem cells (NSCs) to observe the effect on their growth, differentiation, proliferation, and preliminary explored the ES influence on cells in vitro. The results of immunofluorescence showed that ES had no significant effect on the NSCs specific expression, and the NSCs specific expression reached 98.9% ±0.4% after three days of ES. In addition, ES significantly promoted cell growth and the cell proliferation rate reached 49.41%. To conclude, the microfluidic/microelectrode composite microdevice can play a positive role in the nerve injury repair and fundamental research of neurological diseases.
  • 加载中
    1. [1]

      N.V. Klinger, S. Mittal, Clin. Neurol. Neurosurg. 140(2016) 11-25.  doi: 10.1016/j.clineuro.2015.11.009

    2. [2]

      S. Miocinovic, S. Somayajula, S. Chitnis, J.L. Vitek, JAMA Neurol. 70(2013) 163-171.  doi: 10.1001/2013.jamaneurol.45

    3. [3]

      K. Seppi, D. Weintraub, M. Coelho, et al., Mov. Disord. 26(2011) 42-80.  doi: 10.1002/mds.23884

    4. [4]

      X. Pu, X. Zhou, Z. Huang, G. Yin, X. Chen, Chin. Chem. Lett. 31(2020) 1141-1146.  doi: 10.1016/j.cclet.2019.07.002

    5. [5]

      D.H. Kim, J. Viventi, J.J. Amsden, et al., Nat. Mater. 9(2010) 511-517.  doi: 10.1038/nmat2745

    6. [6]

      W. Jing, Q. Ao, L. Wang, et al., Chem. Eng. J. 345(2018) 566-577.  doi: 10.1016/j.cej.2018.04.044

    7. [7]

      D. Xu, L. Fan, L. Gao, et al., ACS Appl. Mater. Interfaces 8(2016) 17090-17097.  doi: 10.1021/acsami.6b03555

    8. [8]

      A.K. Dubey, S.D. Gupta, B. Basu, J. Biomed. Mater. Res. Part B 98(2011) 18-29.

    9. [9]

      W. Zhu, T. Ye, S.J. Lee, et al., Nanomedicine 14(2018) 2485-2494.  doi: 10.1016/j.nano.2017.03.018

    10. [10]

      L. Xiao, K.J. Gilmore, S.E. Moulton, G.G. Wallace, J. Neural Eng. 55(2009) 260-271.

    11. [11]

      J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt, Biomaterials 30(2009) 4325-4335.  doi: 10.1016/j.biomaterials.2009.04.042

    12. [12]

      Y.J. Chang, C.M. Hsu, C.H. Lin, S.C. Lu, L. Chen, Biochim. Biophys. Acta Gen. Subj. 1830(2013) 4130-4136.  doi: 10.1016/j.bbagen.2013.04.007

    13. [13]

      M. Lei, Y. Zhang, Y. Li, Y. Lei, et al., Med. J. Wuhan Univ. 39(2018) 610-614.

    14. [14]

      A. Gokaltun, M.L. Yarmush, A. Asatekin, O.B. Usta, Technology 5(2017) 1-12.  doi: 10.1142/S2339547817300013

    15. [15]

      T. Yuan, D. Gao, S. Li, Y. Jiang, Chin. Chem. Lett. 30(2019) 331-336.  doi: 10.1016/j.cclet.2018.07.013

    16. [16]

      Y. Zheng, Z. Wu, J.M. Lin, L. Lin, Chin. Chem. Lett. 31(2020) 451-454.  doi: 10.1016/j.cclet.2019.07.036

    17. [17]

      J. Park, H. Koito, J. Li, A. Han, Biomed. Microdevices 11(2009) 1145-1153.  doi: 10.1007/s10544-009-9331-7

    18. [18]

      C.W. Huang, S.B. Huang, G.B. Lee, J. Micromech. Microeng. 17(2007) 783-786.

    19. [19]

      S. Han, K. Yang, Y. Shin, et al., Lab Chip 12(2012) 2305-2308.  doi: 10.1039/c2lc21285d

    20. [20]

      Y. Shin, K. Yang, S. Han, et al., Adv. Healthc. Mater. 3(2013) 1457-1464.

    21. [21]

      G. Konstantin, H. Grégoire, J. Nathan, et al., BioNanoSci 4(2014) 263-275.  doi: 10.1007/s12668-014-0137-6

    22. [22]

      M.K. Lewandowska, D.J. Bakkum, S.B. Rompani, A. Hierlemann, PLoS One 10(2015) e0118514.  doi: 10.1371/journal.pone.0118514

    23. [23]

      R. Habibey, S. Latifi, H. Mousavi, et al., Sci. Rep. 7(2017) 8558-8572.  doi: 10.1038/s41598-017-09033-3

    24. [24]

      X. Luo, C.L. Weaver, D.D. Zhou, R. Greenberg, X.T. Cui, Biomaterials 32(2011) 5551-5557.  doi: 10.1016/j.biomaterials.2011.04.051

    25. [25]

      J.H. Lim, S.D. McCullen, J.A. Piedrahita, E.G. Loboa, N.J. Olby, Cell. Reprogramm. 15(2013) 405-412.  doi: 10.1089/cell.2013.0001

    26. [26]

      K. Wang, H.A. Fishman, H. Dai, J.S. Harris, Nano Lett. 6(2006) 2043-2048.  doi: 10.1021/nl061241t

    27. [27]

      D.E. Moga, M.E. Calhoun, A. Chowdhury, et al., Neuroscience 125(2004) 7-11.  doi: 10.1016/j.neuroscience.2004.02.004

    28. [28]

      B. Ercan, T.J. Webster, Biomaterials 31(2010) 3684-3693.  doi: 10.1016/j.biomaterials.2010.01.078

    29. [29]

      A.N. Koppes, N.W. Zaccor, C.J. Rivet, et al., J. Neural Eng. 11(2014) 2-13.

    30. [30]

      T. Gordon, T.M. Brushart, N. Amirjani, K.M. Chan, Acta Neurochir. Suppl. 100(2007) 3-11.

    31. [31]

      J. Huang, Z. Ye, X. Hu, L. Lu, Z. Luo, Glia 58(2010) 622-631.

    32. [32]

      R. Piacentini, C. Ripoli, D. Mezzogori, G.B. Azzena, C. Grassi, J. Cell. Physiol. 215(2008) 129-139.  doi: 10.1002/jcp.21293

    33. [33]

      C. Grassi, M. D'Ascenzo, A. Torsello, et al., Cell Calcium 35(2004) 307-315.  doi: 10.1016/j.ceca.2003.09.001

    34. [34]

      C.A. Ariza, A.T. Fleury, C.J. Tormos, et al., Stem Cell Rev. Rep. 6(2010) 585-600.  doi: 10.1007/s12015-010-9171-0

  • 加载中
    1. [1]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    2. [2]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    3. [3]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    4. [4]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    5. [5]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    6. [6]

      Yueying YangHuiru XieXinbo YuYang LiuHui WangHua LiLixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570

    7. [7]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    8. [8]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

Metrics
  • PDF Downloads(4)
  • Abstract views(789)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return