Citation: Qiang Wang, Hongjian Song, Qingmin Wang. Fluorine-containing agrochemicals in the last decade and approaches for fluorine incorporation[J]. Chinese Chemical Letters, ;2022, 33(2): 626-642. doi: 10.1016/j.cclet.2021.07.064 shu

Fluorine-containing agrochemicals in the last decade and approaches for fluorine incorporation

Figures(55)

  • In this review, the methodologies for fluorine incorporation of 40 fluorine-containing agrochemicals that received an international standardization organization (ISO) name during the last decade are described. The predominant approach for fluorine introduction of these agrochemicals is to use a fluorine-containing building block. Here we present how the fluorine-containing building blocks are introduced into these agrochemicals. The synthetic methods of fluorine-containing building blocks that are not easily available are also specifically discussed. Fluoroarenes, difluomethylarenes and trifluomethylarenes are the main building blocks that have been used in this review. Fluorine-containing small molecules, such as alcohol, amine, ketoester, olefin are also widely used. The only example of late-stage fluorination is the synthesis of fungicide quinofumelin. We believe the fluorine introduction methods described here can provide ideas for the development of new and economical pesticide synthetic routes, and stimulate researchers to develop new fluorine incorporation methods and create new pesticides.
  • 加载中
    1. [1]

      R. Berger, G. Resnati, P. Metrangolo, et al., Chem. Soc. Rev. 40(2011) 3496-3508.  doi: 10.1039/c0cs00221f

    2. [2]

      K. Müller, C. Faeh, F. Diederich, Science 317(2007) 1881-1886.  doi: 10.1126/science.1131943

    3. [3]

      J. Nie, H.C. Guo, D. Cahard, J.A. Ma, Chem. Rev. 111(2011) 455-529.  doi: 10.1021/cr100166a

    4. [4]

      E.P. Gillis, K.J. Eastman, M.D. Hill, et al., J. Med. Chem. 58(2015) 8315-8359.  doi: 10.1021/acs.jmedchem.5b00258

    5. [5]

      J.A. Ma, D. Cahard, Emerging Fluorinated Motifs, Wiley-VCH, Weinheim, 2020.

    6. [6]

      G. Theodoridis, Fluorine-containing agrochemicals: An overview of recent developments, in: A. Tressaud (Ed.), Fluorine and the Enviroment, Elsevier, New York, 2006, pp. 121-175.

    7. [7]

      Y.Y. Huang, X. Yang, Z. Chen, et al., Chem. Eur. J. 21(2015) 8664-8684.  doi: 10.1002/chem.201500361

    8. [8]

      Y. Zhu, J.L. Han, J.D. Wang, et al., Chem. Rev. 118(2018) 3887-3964.  doi: 10.1021/acs.chemrev.7b00778

    9. [9]

      P. Jeschke, ChemBioChem 5(2004) 570-589.  doi: 10.1002/cbic.200300833

    10. [10]

      P. Jeschke, Pest Manag. Sci. 73(2017) 1053-1066.  doi: 10.1002/ps.4540

    11. [11]

      Y. Ogawa, E. Tokunaga, O. Kobayashi, K. Hirai, N. Shibata, iScience 23(2020) 101467-101520.  doi: 10.1016/j.isci.2020.101467

    12. [12]

      The full list of ISO common names and some details on the molecules can be found at the following website: Compendium of Pesticide Common Names; Index of new ISO common names. http://www.alanwood.net/pesticides/index_new_frame.html.

    13. [13]

      D.T. Flood, Org. Synth. 13(1933) 46.  doi: 10.15227/orgsyn.013.0046

    14. [14]

      G.C. Finger, C.W. Kruse, J. Am. Chem. Soc. 78(1956) 6034-6037.  doi: 10.1021/ja01604a022

    15. [15]

      H. Walter, H. Tobler, D. Gribkov, C. Corsi, Chimia 69(2015) 425-434.  doi: 10.2533/chimia.2015.425

    16. [16]

      D. Gribkov, A. Müller, M. Lagger, F. Giordano, WO 2011/015416.

    17. [17]

      H. Walter, C. Corsi, J. Ehrenfreund, C. Lamberth, H. Tobler, WO 2006/005612.

    18. [18]

      J. Iwata, F. Nishio, T. Iwasa, et al., JP 2019/085371.

    19. [19]

      H. Nobeshima, N. Koyama, M. Harada, JP 2014/144930.

    20. [20]

      K. Patzer, J. Kratchmer, D. Blatta, WO 2021/074312.

    21. [21]

      S. Watanabe, JP 2020/109133.

    22. [22]

      T. Shigyo, N. Hasunuma, Y. Fukami, JP 2021/066685.

    23. [23]

      S. Banba, T. Hamada, N. Araki, et al., J. Pestic. Sci. 42(2017) 25-31.  doi: 10.1584/jpestics.D16-100

    24. [24]

      T. Hamada, M. Asanagi, T. Satozawa, et al., J. Pestic. Sci. 39(2014) 152-158.

    25. [25]

      N. Kamegawa, K. Morizane, JP 2012/067030.

    26. [26]

      H. Umetani, T. Kohno, H. Kamekawa, WO 2012/039132.

    27. [27]

      N. Umetsu1, Y. Shirai, J. Pestic. Sci. 45(2020) 54-74.  doi: 10.1584/jpestics.D20-201

    28. [28]

      L. Li, M. Li, H.W. Chi, et al., J. Fluor. Chem. 185(2016) 173-180.  doi: 10.1016/j.jfluchem.2016.03.013

    29. [29]

      C.L. Liu, H.W. Chi, D.L. Cui, et al., WO 2007/000098.

    30. [30]

      W.O. Johnson, EP 0019388, 1980.

    31. [31]

      M.A. Hanagan, A.J. Liepa, E.A. Marshall, et al., WO 2011/146182.

    32. [32]

      A.J. Liepa, R.J. Pasteris, T.M. Stevenson, WO 2011/085170.

    33. [33]

      K. Kikutake, T. Furuya, M. Hasebe, et al., J. Pestic. Sci. 45(2020) 184-190.  doi: 10.1584/jpestics.J20-02

    34. [34]

      M. Oda, Y. Morishita, WO 2010/122794.

    35. [35]

      M. Kawaguchi, JP 2013/023466.

    36. [36]

      M. Oda, Y. Morishita, WO 2010/122794.

    37. [37]

      H. Hayashi, H. Sonoda, K. Fukumura, et al., Chem. Commun. 15(2002) 1618-1619.

    38. [38]

      H. Ito, H. Komai, F. Kajino, JP 2013/124248.

    39. [39]

      H. Umetani, N. Kondo, F. Kajino, WO 2013/047749.

    40. [40]

      T.T. Li, H.L. Li, T.T. Liu, et al., Pest. Biochem. Physiol. 173(2021) 104784-104791.  doi: 10.1016/j.pestbp.2021.104784

    41. [41]

      G.Y. Li, Y.Z. Jun, CN 101759597, 2013.

    42. [42]

      U.J. Vogelbacher, J. Gebhardt, M. Rack, et al., WO 2015/091045.

    43. [43]

      P. Desbordes, B. Essigmann, S. Gary, et al., Pest Manag. Sci. 76(2020) 3340-3347.  doi: 10.1002/ps.5951

    44. [44]

      S. Pazenok, W. Etzel, N. Lui, A. Neeff, WO 2014/023667.

    45. [45]

      P. Bellandi, G. Zanardi, R.V. Datar, et al., WO 2017/178868.

    46. [46]

      Y. Matsuzaki, S. Watanabe, T. Harada, F. Iwahashi, Pest Manag. Sci. 76(2020) 1393-1401.  doi: 10.1002/ps.5652

    47. [47]

      Y. Nakae, A. Manabe, T. Miyamoto, WO 2014/129612.

    48. [48]

      T. Toriumi, JP 2015/214503.

    49. [49]

      T. Sandmeyer, Helv. Chim. Acta 2(1919) 234-242.  doi: 10.1002/hlca.19190020125

    50. [50]

      R.B. He, J.X. Zhong, Y.M. Wang, et al., CN 101245020, 2011.

    51. [51]

      T. Ito, K. Hirakuri, JP 2016/169165.

    52. [52]

      K. Shibayama, J. Inagaki, Y. Saiki, et al., WO 2011/081174.

    53. [53]

      R. Zhang, H.Y. Wang, H. Xv, et al., J. Pestic. Sci. 39(2014) 43-47.  doi: 10.1584/jpestics.D13-017

    54. [54]

      H. Zhang, M. Zhai, K. Wang, et al., Chin. J. Pesticide Sci. 15(2013) 405-411.

    55. [55]

      B Wang, CN 101062914, 2007.

    56. [56]

      P.D. Riordan, M.R. Amin, T.H. Jackson, WO 2001/017970.

    57. [57]

      N. Dann, P.D. Riordan, M.R. Amin, M. Mellor, WO 2002/016322.

    58. [58]

      K. Hirota, JP 2004/075556.

    59. [59]

      Z.H. Guo, J.C. Gu, X.J. Lin, X.B. Fan, CN 106673964, 2017.

    60. [60]

      Z. Zhang, D.P. Jiang, H.X. Zhang, Y.X. Li, CN 108069832, 2018.

    61. [61]

      J.F. Tang, A.L. Wang, CN 102086173, 2011.

    62. [62]

      K.G. Meyer, C.L. Yao, Y. Lu, et al., The discovery of florylpicoxamid, a new picolinamide for disease control, in: P. Maienfisch, S. Mangelinckx (Eds.), Recent Highlights in the Discovery and Optimization of Crop Protection Products, Academic Press, Cambridge, Massachusetts, 2021, pp. 433-442.

    63. [63]

      G.T. Whiteker, N. Choy, P. Borromeo, et al., WO 2018/009618.

    64. [64]

      J.Q. Miao, C.C. Li, X.F. Liu, et al., J. Agric. Food Chem. 69(2021) 3827-3835.  doi: 10.1021/acs.jafc.0c05119

    65. [65]

      G. Hoemberger, M.J. Ford, WO 2015/181097.

    66. [66]

      E. Schmitt, A. Panossian, J.P. Vors, et al., Chem. Eur. J. 22(2016) 11239-11244.  doi: 10.1002/chem.201601621

    67. [67]

      S. Pazenok, M.J. Ford, A. Neeff, WO 2015/067802.

    68. [68]

      S. Pazenok, N. Liu, WO 2015/189141.

    69. [69]

      L. Xiong, H. Li, L.N. Jiang, et al., J. Agric. Food Chem. 65(2017) 1021-1029.  doi: 10.1021/acs.jafc.6b05134

    70. [70]

      G. Wei, M.W. Huang, W.J. Wang, et al., J. Agric. Food Chem. 69(2021) 3965-3971.  doi: 10.1021/acs.jafc.0c07322

    71. [71]

      G.F. Yang, L. Xiong, Q. Chen, CN 104557709, 2017.

    72. [72]

      R. Nauen, P. Jeschke, R. Velten, et al., Pest Manag Sci 71(2015) 850-862.  doi: 10.1002/ps.3932

    73. [73]

      W.A. Moradi, G. Schlegel, A. Schnatterer, WO 2015/140198.

    74. [74]

      N. Lui, J.D. Heinrich, WO 2010/105772.

    75. [75]

      N. Lui, J.D. Heinrich, WO 2009/036898.

    76. [76]

      X.L. He, Pesticide News 19(2018) 36-37.

    77. [77]

      C.S.R. Kokatam, A.N. Chimmiri, P. Kumar, et al., WO 2016/125185.

    78. [78]

      Y. Kato, S. Shimano, A. Morikawa, et al., WO 2010/007964.

    79. [79]

      T. Mori, Y. Tanaka, T. Uekawa, et al., Jpn. J. Environ. Entomol. Zool. 28(2017) 87-90.

    80. [80]

      K. Hagiya, WO 2008/099966.

    81. [81]

      T. Mori, US 2003/0195119.

    82. [82]

      W.M. Zhang, C.W. Holyoke Jr, T.F. Pahutski, et al., Bioorg. Med. Chem. Lett. 27(2017) 16-20.  doi: 10.1016/j.bmcl.2016.11.042

    83. [83]

      D.N. Kambrekar, S. Jahagirdar, J. Aruna, Biochem. Cell. Arch. 17(2017) 801-804.

    84. [84]

      S. Pazenok, N. Lui, F. Volz, et al., WO 2011/157664.

    85. [85]

      C.C. Haeselhoff, A. Schnatterer, J. Vermehren, WO 2018/019693.

    86. [86]

      H. Mitsudera, WO 2009/005110.

    87. [87]

      M. Hirota, H. Miyazaki, T. Itoh, WO 2011/019076.

    88. [88]

      M. Kawamura, DE 102014004684, 2014.

    89. [89]

      IRAC Mode of action classification, version 9.4, 2020. https: //irac-online.org/mode-of-action/.

    90. [90]

      T. Nakao, S. Banba, Bioorg. Med, Chem. 24(2016) 372-377.  doi: 10.1016/j.bmc.2015.08.008

    91. [91]

      Y. Gao, Y.C. Zhang, F.S. Wu, et al., J. Agric. Food Chem. 68(2020) 14768-14780.  doi: 10.1021/acs.jafc.0c05728

    92. [92]

      Y. Aoki, Y. Kobayashi, H. Daido, et al., WO 2010/018857.

    93. [93]

      Y. Kobayashi, H. Katsuta, M. Nomura, et al., WO 2010/013567.

    94. [94]

      E. Satoh, R. Kasahara, K. Fukatsu, et al., J. Pestic. Sci. 46(2021) 109-114.  doi: 10.1584/jpestics.D20-069

    95. [95]

      E. Satoh, R. Kasahara, T. Aoki, et al., International Scholarly and Scientific Research & Innovation 11(2017) 725-728.

    96. [96]

      S. Kagabu, M. Mitomi, S. Kitsuda, et al., WO 2012/029672.

    97. [97]

      Y. Onozaki, R. Horikoshi, I. Ohno, et al., J. Agric. Food Chem. 65(2017) 7865-7873.  doi: 10.1021/acs.jafc.7b02924

    98. [98]

      S. Kitsuda, N. Nakanishi, S. Sumi, WO 2018/052115.

    99. [99]

      A.M. Buysse, N.M. Niyaz, Y. Zhang, et al., WO 2013/162715.

    100. [100]

      K.C. Gray, P. Heider, P. McGough, et al., Org. Process Res. Dev. 23(2019) 2142-2147.  doi: 10.1021/acs.oprd.9b00129

    101. [101]

      M. Ito, Y. Nokura, M. Takahashi, et al., Discovery of oxazosulfyl: A novel broad-spectrum insecticide, in: P. Maienfisch, S. Mangelinckx (Eds.), Recent Highlights in the Discovery and Optimization of Crop Protection Products, Academic Press, Cambridge, Massachusetts, 2021, pp. 261-267.

    102. [102]

      T. Suzuki, S. Yamato, J. Agric. Food Chem. 69(2021) 4048-4055.  doi: 10.1021/acs.jafc.0c04617

    103. [103]

      J. Cassayre, T. Smejkal, J. Blythe, et al., The discovery of isocycloseram: A novel isoxazoline insecticide, in: P. Maienfisch, S. Mangelinckx (Eds.), Recent Highlights in the Discovery and Optimization of Crop Protection Products, Academic Press, Cambridge, Massachusetts, 2021, pp. 165-212.

    104. [104]

      T. Akama, T.W. Balko, J.M. Defauw, et al., US 2013/0131016.

    105. [105]

      M. El Qacemi, J.Y. Cassayre, WO 2013/050302.

    106. [106]

      K. Matoba, H. Kawai, T. Furukawa, et al., Angew. Chem. Int. Ed. 49(2010) 5762-5766.  doi: 10.1002/anie.201002065

    107. [107]

      J. Park, Y.O. Ahn, J.W. Nam, et al., Pestic. Biochem. Physiol. 152(2018) 38-44.  doi: 10.1016/j.pestbp.2018.08.010

    108. [108]

      K. Lee, J. Kuk, Y. C, Ahn, J. Lee, WO 2018/128387.

    109. [109]

      Public release summary on the evaluation of the new active trifludimoxazin in the product voraxor herbicide, 2020. https://apvma.gov.au/node/65676.

    110. [110]

      M. Dochnahl, R. Goetz, F. Gebhardt, et al., WO 2014/026893.

    111. [111]

      Review of florpyrauxifen-benzyl for application to massachusetts lakes and ponds, 2019. https://www.mass.gov/doc/florpyrauxifen-benzyl/download.

    112. [112]

      S.C. Fields, W.C. Lo, W.K. Brewster, et al., Tetrahedron Lett. 51(2010) 79-81.  doi: 10.1016/j.tetlet.2009.10.089

    113. [113]

      J. Oppenheimer, M.V.M. Emonds, C.W. Derstine, R.C. Clouse, WO 2013/102078.

    114. [114]

      J.B. Epp, A.L. Alexander, T.W. Balko, et al., Bioorg. Med. Chem. 24(2016) 362-371.  doi: 10.1016/j.bmc.2015.08.011

    115. [115]

      S. Takamura, T. Okada, S. Fukuda, et al., Proc. Br. Crop Prot. Conf. Weeds 1(1999) 41-46.

    116. [116]

      I.J. Buerge, A. Bächli, J.P.D. Joffrey, et al., Environ. Sci. Technol. 47(2013) 6806-6811.  doi: 10.1021/es301876d

    117. [117]

      W.D. Zhang, CN 102766067, 2012.

    118. [118]

      Y. Kiyoshi, JP 10130204 A, 1998.

    119. [119]

      T. Takematsu, Y. Takeuchi, M. Takenaka, et al., EP 239414, 2016.

    120. [120]

      F. E Dayan, Plants 8(2019) 341-358.  doi: 10.3390/plants8090341

    121. [121]

      Y.Z. Chen, WO 2018/175226.

    122. [122]

      S. Tresch, M. Heilmann, N. Christiansen, et al., Phytochemistry 76(2012) 162-171.  doi: 10.1016/j.phytochem.2011.12.023

    123. [123]

      Y. Kusuoka, T. Akeboshi, T. Io, D. Nakamura, WO 2015/060402.

    124. [124]

      Y. Tohyama, Y. Sanemitsu, EP 1122244, 2001.

    125. [125]

      R. Beaudegnies, J. Cassayre, B.D. Gott, et al., WO 2007/083090.

    126. [126]

      Y. Sato, JP 2018/123060.

    127. [127]

      T. Furuya, K. Machiya, S. Fujioka, M. Nakano, K. Inagaki, J. Pestic. Sci. 42(2017) 132-136.  doi: 10.1584/jpestics.J17-02

    128. [128]

      N. Abe, O. Sanbe, JP 2010/275207.

    129. [129]

      S. Cao, C. Liu, J.J. He, et al., CN 111825616, 2020.

    130. [130]

      B.S. Chai, C.L. Liu, H.C. Li, et al., Pest. Manag. Sci. 67(2011) 1141-1146.

    131. [131]

      Y.P. Zhou, G.X. Wu, C.L. Liu, et al., CN 103387546, 2013.

    132. [132]

      I. Hamamoto, JP 2013/170128.

    133. [133]

      I. Hamamoto, K. Koizumi, M. Kawaguchi, et al., WO 2011/105506.

    134. [134]

      K. Domon, K. Toriyabe, Y. Ogawa, et al., WO 2013/157229.

    135. [135]

      K. Sambai, WO 2019/167814.

    136. [136]

      S. Yasumura, WO 2019/208355.

    137. [137]

      S. Yasumura, WO 2019/167733.

    138. [138]

      S. Ito, T. Matsuda, S. Mukawa, JP 2015/160813.

    139. [139]

      G.P. Lahm, J. Desaeger, B.K. Smith, et al., Bioorg. Med. Chem. Lett. 27(2017) 1572-1575.  doi: 10.1016/j.bmcl.2017.02.029

    140. [140]

      G.P. Lahm, R.M. Lett, B.T. Smith, et al., WO 2010/129500.

    141. [141]

      J. Jiricek, S.P. Ng, S.P.S. Rao, WO 2019/244049.

    142. [142]

      A.C. O'Sullivan, R.J.G. Mondiere, O. Loiseleur, et al., WO 2015/003951.

    143. [143]

      P. Mueller, EP 1340747, 2003.

  • 加载中
    1. [1]

      Qian WangYeping BianGagan DhawanWei ZhangAlexander E. SorochinskyAta MakaremVadim A. SoloshonokJianlin Han . FDA approved fluorine-containing drugs in 2023. Chinese Chemical Letters, 2024, 35(11): 109780-. doi: 10.1016/j.cclet.2024.109780

    2. [2]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    3. [3]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    4. [4]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    5. [5]

      Jia-Ru LiNing LiLi-Ling HeJun He . Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole. Chinese Chemical Letters, 2025, 36(1): 109934-. doi: 10.1016/j.cclet.2024.109934

    6. [6]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    7. [7]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    8. [8]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    9. [9]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    10. [10]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    11. [11]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    12. [12]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    13. [13]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    14. [14]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    15. [15]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    16. [16]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    17. [17]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    18. [18]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    19. [19]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

Metrics
  • PDF Downloads(265)
  • Abstract views(4521)
  • HTML views(1009)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return