Plasma treated carbon paper electrode greatly improves the performance of iron-hydrogen battery for low-cost energy storage
-
* Corresponding author.
E-mail address: xczhou2013@sinano.ac.cn (X. Zhou).
Citation: Chuang Bai, Fandi Ning, Saifei Pan, Huihui Wang, Yali Li, Min Shen, Xiaochun Zhou. Plasma treated carbon paper electrode greatly improves the performance of iron-hydrogen battery for low-cost energy storage[J]. Chinese Chemical Letters, ;2022, 33(2): 1095-1099. doi: 10.1016/j.cclet.2021.07.008
M.S. Ziegler, J.M. Mueller, G.D. Pereira, et al., Joule 3 (2019) 2134-2153.
doi: 10.1016/j.joule.2019.06.012
S. Pang, X. Wang, P. Wang, Y. Ji, Angew. Chem. Int. Ed. 60 (2021) 5289-5298.
doi: 10.1002/anie.202014610
M. Ferrara, Y. -M. Chiang, J.M. Deutch, Joule 3 (2019) 2585-2588.
doi: 10.1016/j.joule.2019.08.007
J. Zhang, X. Sheng, Z. Ding, et al., Sci. Bull. 66 (2021) 164-169.
doi: 10.3390/separations8100164
T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, Adv. Energy Mater. 6 (2016) 1501449.
doi: 10.1002/aenm.201501449
J. Luo, B. Hu, C. Debruler, T.L. Liu, Angew. Chem. Int. Ed. 57 (2018) 231-235.
doi: 10.1002/anie.201710517
X. Wei, W. Pan, W. Duan, et al., ACS Energy Lett. 2 (2017) 2187-2204.
doi: 10.1021/acsenergylett.7b00650
Y. Zhen, C. Zhang, J. Yuan, Y. Zhao, Y. Li, J. Power Sources 445 (2020) 227331.
doi: 10.1016/j.jpowsour.2019.227331
K. Gong, F. Xu, J.B. Grunewald, et al., ACS Energy Lett. 1 (2016) 89-93.
doi: 10.1021/acsenergylett.6b00049
Y. Shao, Y. Cheng, W. Duan, et al., ACS Catal. 5 (2015) 7288-7298.
doi: 10.1021/acscatal.5b01737
J. Noack, N. Roznyatovskaya, T. Herr, P. Fischer, Angew. Chem. Int. Ed. 54 (2015) 9776-9809.
doi: 10.1002/anie.201410823
X. Wei, W. Xu, M. Vijayakumar, et al., Adv. Mater. 26 (2014) 7649-7653.
doi: 10.1002/adma.201403746
J. Winsberg, T. Hagemann, T. Janoschka, M.D. Hager, U.S. Schubert, Angew. Chem. Int. Ed. 56 (2017) 686-711.
doi: 10.1002/anie.201604925
C. Ding, H. Zhang, X. Li, T. Liu, F. Xing, J. Phys. Chem. Lett. 4 (2013) 1281-1294.
doi: 10.1021/jz4001032
H. Wang, C. Bai, T. Zhang, et al., ACS Appl. Mater. Inter. 12 (2020) 4473-4481.
doi: 10.1021/acsami.9b18511
K. Wang, N. Li, Y. Yang, et al., Chin. Chem. Lett. (2021) https://doi.org/10.1016/j.cclet.2021.02.045.
doi: 10.1016/j.cclet.2021.02.045
L. Li, S. Kim, W. Wang, et al., Adv. Energy Mater. 1 (2011) 394-400.
doi: 10.1002/aenm.201100008
S. Roe, C. Menictas, M. Skyllas-Kazacos, J. Electrochem. Soc. 163 (2015) A5023-A5028.
K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, S. Tasnim, J. Energy Storage 25 (2019) 100844.
doi: 10.1016/j.est.2019.100844
D. Banham, S. Ye, ACS Energy Lett. 2 (2017) 629-638.
doi: 10.1021/acsenergylett.6b00644
L. Zhou, L. Chen, Z. Ding, et al., Nano Res. 14 (2020) 172-176.
Multi-Year Research, Development, and Demonstration Plan, http://energy.gov/sites/prod/files/2016/10/f33/fcto_myrdd_fuel_cells.pdf.
M.C. Tucker, K.T. Cho, A.Z. Weber, J. Power Sources 245 (2014) 691-697.
doi: 10.1016/j.jpowsour.2013.07.029
K. Fatih, D.P. Wilkinson, F. Moraw, A. Ilicic, F. Girard, Electrochem. Solid-State Lett. 11 (2008) B11.
doi: 10.1149/1.2812788
N. Kasoju, L.T.B. Nguyen, A.R. Padalhin, et al., Techniques for modifying biomaterials to improve hemocompatibility, in: C.A. Siedlecki (Ed. ), Hemocompatibility of Biomaterials for Clinical Applications, Woodhead Publishing Inc., Duxford, 2018, pp. 191-220.
S. Dou, L. Tao, R. Wang, et al., Adv. Mater. 30 (2018) e1705850.
doi: 10.1002/adma.201705850
X. Wu, H. Xu, P. Xu, et al., J. Power Sources 263 (2014) 104-109.
doi: 10.1016/j.jpowsour.2014.04.035
B. Sun, M. Skyllas-Kazacos, Electrochim. Acta 37 (1992) 1253-1260.
doi: 10.1016/0013-4686(92)85064-R
B. Sun, M. Skyllas-Kazacos, Electrochim. Acta 37 (1992) 2459-2465.
doi: 10.1016/0013-4686(92)87084-D
R. Cheng, F. Zhang, M. Li, et al., Front. Chem. 7 (2019) 588.
doi: 10.3389/fchem.2019.00588
W. Xu, X. Sheng, H. Zhou, et al., Chem. Eng. J. 410 (2021) 128342.
doi: 10.1016/j.cej.2020.128342
P.C. Ghimire, R. Schweiss, G.G. Scherer, et al., Carbon 155 (2019) 176-185.
doi: 10.1016/j.carbon.2019.08.068
Y.J. Kim, H.J. Lee, S.W. Lee, B.W. Cho, C.R. Park, Carbon 43 (2005) 163-169.
doi: 10.4097/kjae.2005.48.2.163
V. Datsyuk, M. Kalyva, K. Papagelis, et al., Carbon 46 (2008) 833-840.
doi: 10.1016/j.carbon.2008.02.012
Y.K. Zeng, X.L. Zhou, L. An, L. Wei, T.S. Zhao, J. Power Sources 324 (2016) 738-744.
doi: 10.1016/j.jpowsour.2016.05.138
E. Hollax, D.S. Cheng, Carbon 23 (1985) 655-664.
doi: 10.1016/0008-6223(85)90225-8
M. Alon, A. Blum, E. Peled, J. Power Sources 240 (2013) 417-420.
doi: 10.1016/j.jpowsour.2013.04.032
Y.K. Zeng, T.S. Zhao, X.L. Zhou, J. Zou, Y.X. Ren, J. Power Sources 352 (2017) 77-82.
doi: 10.1016/j.jpowsour.2017.03.125
M.C. Tucker, A. Weiss, A.Z. Weber, J. Power Sources 327 (2016) 591-598.
doi: 10.1016/j.jpowsour.2016.07.105
V. Watson, D. Nguyen, E.E. Effiong, E.E. Kalu, ECS Electrochem. Lett. 4 (2015) A72-A75.
doi: 10.1149/2.0091507eel
R. Nie, M. Miao, W. Du, et al., Appl. Catal. B180 (2016) 607-613.
doi: 10.1016/j.apcatb.2015.07.015
M.C. Tucker, V. Srinivasan, P.N. Ross, A.Z. Weber, J. Appl. Electrochem. 43 (2013) 637-644.
doi: 10.1007/s10800-013-0553-2
N. Garcia-Araez, V. Climent, P. Rodriguez, J.M. Feliu, Langmuir 26 (2010) 12408-12417.
doi: 10.1021/la101112b
K. Marma, J. Kolli, K.T. Cho, J. Electrochem. En. Conv. Stor. 16 (2019) 011005.
doi: 10.1115/1.4040329
M. Skyllas-Kazacos, J. Power Sources 124 (2003) 299-302.
doi: 10.1016/S0378-7753(03)00621-9
T. Okada, Effect of ionic contaminants, in: W. Vielstich, A. Lamm, H.A. Gasteiger, H. Yokokawa (Eds. ), Handbook of Fuel Cells - Fundamentals, Technology and Applications, John Wiley & Sons, Ltd., 2010, pp. 1721-1740.
P. Zanello, Voltammetric techniques, in: Inorganic Electrochemistry: Theory, Practice and Application, The Royal Society of Chemistry, Ltd., 2003, pp. 49-136.
X. Zhou, W. Ouyang, C. Liu, et al., J. Power Sources 158 (2006) 1209-1221.
doi: 10.1016/j.jpowsour.2005.10.025
D. Wang, Y. Zou, L. Tao, et al., Chin. Chem. Lett. 30 (2019) 826-838.
doi: 10.1016/j.cclet.2019.03.051
X. Guo, L. Xiao, P. Yan, et al., Chin. Chem. Lett. (2021) https://doi.org/10.1016/j.cclet.2021.03.066.
doi: 10.1016/j.cclet.2021.03.066
R.A. Lawton, C.R. Price, A.F. Runge, W.J. Doherty, S.S. Saavedra, Colloids and Surf. A253 (2005) 213-215.
doi: 10.1016/j.colsurfa.2004.11.010
S. Debnath, R. Ranade, S.L. Wunder, et al., J. Appl. Polym. Sci. 96 (2005) 1564-1572.
doi: 10.1002/app.21598
J.Y. Meng, Y.Y. Wang, Adv. Mater. Res. 1015 (2014) 303-307.
doi: 10.4028/www.scientific.net/AMR.1015.303
C.X. Wang, J.C. Lv, Y. Ren, et al., Appl. Surf. Sci. 359 (2015) 196-203.
doi: 10.1016/j.apsusc.2015.10.060
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Wenbi Wu , Yinchu Dong , Haofan Liu , Xuebing Jiang , Li Li , Yi Zhang , Maling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
Shaoming Dong , Yiming Niu , Yinghui Pu , Yongzhao Wang , Bingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428