A β-cyclodextrin covalent organic framework used as a chiral stationary phase for chiral separation in gas chromatography
-
* Corresponding author.
E-mail address: aqluobit@163.com (A. Luo).
Citation: Bo Tang, Wei Wang, Huipeng Hou, Yiquan Liu, Zongkun Liu, Lina Geng, Liquan Sun, Aiqin Luo. A β-cyclodextrin covalent organic framework used as a chiral stationary phase for chiral separation in gas chromatography[J]. Chinese Chemical Letters, ;2022, 33(2): 898-902. doi: 10.1016/j.cclet.2021.06.089
M.M.M. Pinto, C. Fernandes, M.E. Tiritan, Molecules25 (2020) 1931.
doi: 10.3390/molecules25081931
Q. Wu, H. Lv, L. Zhao, TrAC Trend. Anal. Chem. 129 (2020) 115941.
doi: 10.1016/j.trac.2020.115941
M. Zhou, Y. Long, Y. Zhi, et al., Chinese Chem. Lett. 29 (2018) 1399–1403.
doi: 10.1016/j.cclet.2017.10.039
X. Wang, H. Li, K. Quan, et al., Talanta225 (2021) 121987.
doi: 10.1016/j.talanta.2020.121987
S.M. Xie, L.M. Yuan, J. Sep. Sci. 42 (2019) 6–20.
doi: 10.1002/jssc.201800656
Z.R. Tao, J.X. Wu, Y.J. Zhao, et al., Nat. Commun. 10 (2019) 1–8.
doi: 10.1038/s41467-018-07882-8
M.N. Corella-Ochoa, J.B. Tapia, H.N. Rubin, et al., J. Am. Chem. Soc. 141 (2019) 14306–14316.
doi: 10.1021/jacs.9b06500
J.H. Zhang, S.M. Xie, L. Chen, et al., Anal. Chem. 87 (2015) 7817–7824.
doi: 10.1021/acs.analchem.5b01512
J.H. Zhang, S.M. Xie, B.J. Wang, et al., J. Sep. Sci. 41 (2018) 1385–1394.
doi: 10.1002/jssc.201701095
S.M. Xie, N. Fu, L. Li, et al., Anal. Chem. 90 (2018) 9182–9188.
doi: 10.1021/acs.analchem.8b01670
B. Tang, C.Y. Sun, W. Wang, et al., Chirality32 (2020) 1178–1185.
doi: 10.1002/chir.23263
Y.Y. Cui, C.X. Yang, X.P. Yan, ACS Appl. Mater. Interfaces12 (2020) 4954–4961.
doi: 10.1021/acsami.9b22023
K. Geng, T. He, R. Liu, et al., Chem. Rev. 120 (2020) 8814–8933.
doi: 10.1021/acs.chemrev.9b00550
L. Zhu, Y.B. Zhang, Molecules22 (2017) 1149.
doi: 10.3390/molecules22071149
Y. Ding, Y. Wang, Y. Su, et al., Chinese Chem. Lett. 31 (2020) 193–196.
doi: 10.1016/j.cclet.2019.05.012
Y. Yusran, H. Li, X. Guan, et al., Energy Chem. 2 (2020) 100035.
doi: 10.1016/j.enchem.2020.100035
S. Bhunia, K.A. Deo, A.K. Gaharwar, Adv. Funct. Mater. 30 (2020) 2002046.
doi: 10.1002/adfm.202002046
M.X. Wu, Y.W. Yang, Chinese Chem. Lett. 28 (2017) 1135–1143.
doi: 10.1016/j.cclet.2017.03.026
N. Liu, L. Shi, X. Han, et al., Chinese Chem. Lett. 31 (2020) 386–390.
doi: 10.1016/j.cclet.2019.06.050
G. Zhang, X. Li, Q. Liao, et al., Nat. Commun. 9 (2018) 2785.
doi: 10.1038/s41467-018-04910-5
D. Rodríguez-San-Miguel, C. Montoro, F. Zamora, Chem. Soc. Rev. 49 (2020) 2291–2302.
doi: 10.1039/c9cs00890j
Y. Yan, X. Li, G. Chen, et al., Chinese Chem. Lett. 32 (2021) 107–112.
doi: 10.1016/j.cclet.2020.11.063
S. Zhuo, X. Zhang, H. Luo, et al., Macromol. Rapid Commun. 41 (2020) 2000404.
doi: 10.1002/marc.202000404
X. Han, J. Huang, C. Yuan, et al., J. Am. Chem. Soc. 140 (2018) 892–895.
doi: 10.1021/jacs.7b12110
H.L. Qian, C.X. Yang, X.P. Yan, Nat. Commun. 7 (2016) 12104.
doi: 10.1038/ncomms12104
S. Xu, Y. Wang, W. Li, et al., J. Chromatogr. A1602 (2019) 481–488.
doi: 10.1016/j.chroma.2019.06.018
X. Han, C. Yuan, B. Hou, et al., Chem. Soc. Rev. 49 (2020) 6248–6272.
doi: 10.1039/d0cs00009d
M. Ma, Y. Du, L. Zhang, et al., Microchim. Acta187 (2020) 385.
doi: 10.1007/s00604-020-04360-1
Y. Wang, S. Zhuo, J. Hou, et al., ACS Appl. Mater. Interfaces11 (2019) 48363–48369.
doi: 10.1021/acsami.9b16720
R.Q. Wang, X.B. Wei, Y.Q. Feng, Chem. Eur. J. 24 (2018) 10979–10983.
doi: 10.1002/chem.201802564
Y. He, X. Yang, M. Qi, et al., Chinese Chem. Lett. 32 (2021) 2043–2046.
doi: 10.1016/j.cclet.2020.11.009
J. He, M. Qi, Chinese Chem. Lett. 30 (2019) 1415–1418.
doi: 10.1016/j.cclet.2019.03.008
Y. He, X. Yang, M. Qi, et al., Chinese Chem. Lett. 32 (2021) 2043–2046.
doi: 10.1016/j.cclet.2020.11.009
Z.M. Wang, C.X. Yang, X.P. Yan, J. Chromatogr. A1608 (2019) 460420.
doi: 10.1016/j.chroma.2019.460420
G.K.E. Scriba, J. Chromatogr. A1467 (2016) 56–78.
doi: 10.1016/j.chroma.2016.05.061
N. Issaraseriruk, A. Shitangkoon, T. Aree, J. Mol. Graph. Model. 28 (2010) 506–512.
doi: 10.1016/j.jmgm.2009.11.005
Y. Wang, Y. Sun, H. Bian, et al., ACS Appl. Mater. Interfaces12 (2020) 45916–45928.
doi: 10.1021/acsami.0c15836
T. Aree, J. Incl. Phenom. Macrocycl. Chem. 77 (2013) 439–445.
doi: 10.1007/s10847-012-0264-z
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
Wangyan Hu , Ke Li , Xiangnan Dou , Ning Li , Xiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Xiaoyan Peng , Xuanhao Wu , Fan Yang , Yefei Tian , Mingming Zhang , Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307