Selective N-terminal modification of peptides and proteins: Recent progresses and applications
-
* Corresponding authors.
E-mail addresses: wangj91@qdu.edu.cn (J. Wang), zhangrenshuai@qdu.edu.cn (R. Zhang).
Citation: Hongfei Jiang, Wujun Chen, Jie Wang, Renshuai Zhang. Selective N-terminal modification of peptides and proteins: Recent progresses and applications[J]. Chinese Chemical Letters, ;2022, 33(1): 80-88. doi: 10.1016/j.cclet.2021.06.011
N. Krall, F.P. da Cruz, O. Boutureira, et al., Nat. Chem. 8(2016) 103-113.
doi: 10.1038/nchem.2393
S.B. van Witteloostuijn, S.L. Pedersen, K.J. Jensen, et al., ChemMedChem 11(2016) 2474-2495.
doi: 10.1002/cmdc.201600374
K. Lang, J.W. Chin, Chem. Rev. 114(2014) 4764-4806.
doi: 10.1021/cr400355w
L. Witus, M.B. Francis, Acc. Chem. Res. 44(2011) 774-783.
doi: 10.1021/ar2001292
S.R. Adusumalli, D.G. Rawale, K. Thakur, et al., Angew. Chem. Int. Ed. 59(2020) 10332-10336.
doi: 10.1002/anie.202000062
M.J. Matos, B.L. Oliveira, N. Martinez-Saez, et al., J. Am. Chem. Soc. 140(2018) 4004-4017.
doi: 10.1021/jacs.7b12874
D. Hymel, F. Liu, Org. Lett. 22(2020) 3067-3071.
doi: 10.1021/acs.orglett.0c00816
A.M. Embaby, S. Schoffelen, C. Kofoed, et al., Angew. Chem. Int. Ed. 57(2018) 8022-8026.
doi: 10.1002/anie.201712589
M.J. Matos, C.D. Navo, T. Hakala, et al., Angew. Chem. Int. Ed. 58(2019) 6640-6644.
doi: 10.1002/anie.201901405
N. Shindo, H. Fuchida, M. Sato, et al., Nat. Chem. Biol. 15(2019) 250-258.
doi: 10.1038/s41589-018-0204-3
M. Zhang, G. Liang, Sci. China Chem. 61(2018) 1088-1098.
doi: 10.1007/s11426-018-9277-6
J. Ohata, M.K. Miller, C.M. Mountain, et al., Angew. Chem. Int. Ed. 57(2018) 2827-2830.
doi: 10.1002/anie.201711868
D. Alvarez-Dorta, C. Thobie-Gautier, M. Croyal, et al., J. Am. Chem. Soc. 140(2018) 17120-17126.
doi: 10.1021/jacs.8b09372
H.S. Hahm, E.K. Toroitich, A.L. Borne, et al., Nat. Chem. Biol. 16(2020) 150-159.
doi: 10.1038/s41589-019-0404-5
S. Sato, K. Nakane, H. Nakamura, Org. Biomol. Chem. 18(2020) 3664-3668.
doi: 10.1039/D0OB00650E
X. Chen, F. Ye, X. Luo, et al., J. Am. Chem. Soc. 141(2019) 18230-18237.
doi: 10.1021/jacs.9b09127
S.J. Tower, W.J. Hetcher, T.E. Myers, et al., J. Am. Chem. Soc. 142(2020) 9112-9118.
doi: 10.1021/jacs.0c03039
M.T. Taylor, J.E. Nelson, M.G. Suero, et al., Nature 562(2018) 563-568.
doi: 10.1038/s41586-018-0608-y
S. Lin, X.Y. Yang, S. Jia, et al., Science 355(2017) 597-602.
doi: 10.1126/science.aal3316
C.L. Young, Z.T. Britton, A.S. Robinson, Biotechnol. J. 7(2012) 620-634.
doi: 10.1002/biot.201100155
S. Bloom, C. Liu, D.K. Kolmel, et al., Nat. Chem. 10(2018) 205-211.
doi: 10.1038/nchem.2888
C.B. Rosen, M.B. Francis, Nat. Chem. Biol. 13(2017) 697-705.
doi: 10.1038/nchembio.2416
T. Sereda, C.T. Mant, A.M. Quinn, et al., J. Chromatogr. 646(1993) 17-30.
doi: 10.1016/S0021-9673(99)87003-4
A.O. Chan, C.M. Ho, H.C. Chong, et al., J. Am. Chem. Soc. 134(2012) 2589-2598.
doi: 10.1021/ja208009r
K.K. Kung, K.F. Wong, K.C. Leung, et al., Chem. Commun. 49(2013) 6888-6890.
doi: 10.1039/c3cc42261e
J.R. Deng, N.C. Lai, K.K. Kung, et al., Commun. Chem. 3(2020) 67.
doi: 10.1038/s42004-020-0309-y
J.I. MacDonald, H.K. Munch, T. Moore, et al., Nat. Chem. Biol. 11(2015) 326-331.
doi: 10.1038/nchembio.1792
N. Inoue, A. Onoda, T. Hayashi, Bioconjug. Chem. 30(2019) 2427-2434.
doi: 10.1021/acs.bioconjchem.9b00515
B. Koo, N.S. Dolan, K. Wucherer, et al., Biomacromolecules 20(2019) 3933-3939.
doi: 10.1021/acs.biomac.9b01002
S.S. Liew, C. Zhang, J. Zhang, et al., Chem. Commun. 56(2020) 11473-11476.
doi: 10.1039/D0CC04728G
A. Onoda, N. Inoue, E. Sumiyoshi, et al., ChemBioChem 21(2020) 1274-1278.
doi: 10.1002/cbic.201900692
R. Sangsuwan, P. Tachachartvanich, M.B. Francis, J. Am. Chem. Soc. 141(2019) 2376-2383.
doi: 10.1021/jacs.8b10947
A. Bagag, J.M. Jault, N. Sidahmed-Adrar, et al., PLoS One 8(2013) e79033.
doi: 10.1371/journal.pone.0079033
K.C. Tang, M. Raj, Angew. Chem. Int. Ed. 60(2021) 1797-1805.
doi: 10.1002/anie.202007608
M.C. Martos-Maldonado, C.T. Hjuler, K.K. Sorensen, et al., Nat. Commun. 9(2018) 3307.
doi: 10.1038/s41467-018-05695-3
O. Boutureira, G.J. Bernardes, Chem. Rev. 115(2015) 2174-2195.
doi: 10.1021/cr500399p
D.K. Kolmel, E.T. Kool, Chem. Rev. 117(2017) 10358-10376.
doi: 10.1021/acs.chemrev.7b00090
O. Koniev, A. Wagner, Chem. Soc. Rev. 44(2015) 5495-5551.
doi: 10.1039/C5CS00048C
K.K. Kung, H.M. Ko, J.F. Cui, et al., Chem. Commun. 50(2014) 11899-11902.
doi: 10.1039/C4CC04467C
M.S. Messina, J.M. Stauber, M.A. Waddington, et al., J. Am. Chem. Soc. 140(2018) 7065-7069.
doi: 10.1021/jacs.8b04115
K.L. Seim, A.C. Obermeyer, M.B. Francis, J. Am. Chem. Soc. 133(2011) 16970-16976.
doi: 10.1021/ja206324q
M.K. Miller, H. Wang, K. Hanaya, et al., Chem. Sci. 11(2020) 10501-10505.
doi: 10.1039/D0SC02933E
D. Chen, M.M. Disotuar, X. Xiong, et al., Chem. Sci. 8(2017) 2717-2722.
doi: 10.1039/C6SC04744K
E.M. Milczek, Chem. Rev. 118(2018) 119-141.
doi: 10.1021/acs.chemrev.6b00832
Y. Zhang, K.Y. Park, K.F. Suazo, et al., Chem. Soc. Rev. 47(2018) 9106-9136.
doi: 10.1039/C8CS00537K
S. Lin, C. He, Chin. Chem. Lett. 29(2018) 1017-1021.
doi: 10.1016/j.cclet.2018.05.006
M. Schmidt, A. Toplak, P.J. Quaedflieg, et al., Curr. Opin. Chem. Biol. 38(2017) 1-7.
S.H. Henager, N. Chu, Z. Chen, et al., Nat. Methods 13(2016) 925-927.
doi: 10.1038/nmeth.4004
Q. Wu, H.L. Ploegh, M.C. Truttmann, ACS Chem. Biol. 12(2017) 664-6673.
doi: 10.1021/acschembio.6b00998
Z. Zou, M. Noth, F. Jakob, et al., Bioconjug. Chem. 31(2020) 2476-2481.
doi: 10.1021/acs.bioconjchem.0c00486
X. Dai, A. Böker, U. Glebe, RSC Adv. 9(2019) 4700-4721.
doi: 10.1039/C8RA06705H
Z. Zou, H. Alibiglou, D.M. Mate, et al., Chem. Commun. 54(2018) 11467-11470.
doi: 10.1039/C8CC06017G
C.B. Rosen, R.L. Kwant, J.I. MacDonald, et al., Angew. Chem. Int. Ed. 55(2016) 8585-8589.
doi: 10.1002/anie.201602353
T. Kosciuk, H. Lin, ACS Chem. Biol. 15(2020) 1747-1758.
doi: 10.1021/acschembio.0c00314
A.M. Weeks, J.A. Wells, Chem. Rev. 120(2020) 3127-3160.
doi: 10.1021/acs.chemrev.9b00372
A.M. Weeks, J.A. Wells, Curr. Protoc. Chem. Biol. 12(2020) e79.
A.M. Weeks, J.A. Wells, Nat. Chem. Biol. 14(2018) 50-57.
doi: 10.1038/nchembio.2521
X. Tan, R. Yang, C.F. Liu, Org. Lett. 20(2018) 6691-6694.
doi: 10.1021/acs.orglett.8b02747
X. Hemu, X. Zhang, J.P. Tam, Org. Lett. 21(2019) 2029-2032.
doi: 10.1021/acs.orglett.9b00151
J.P. Tam, N.Y. Chan, H.T. Liew, et al., Sci. China Chem. 63(2020) 296-307.
doi: 10.1007/s11426-019-9648-3
G.K. Nguyen, A. Kam, S. Loo, et al., J. Am. Chem. Soc. 137(2015) 15398-15401.
doi: 10.1021/jacs.5b11014
X. Bi, J. Yin, G.K. Nguyen, et al., Angew. Chem. Int. Ed. 56(2017) 7822-7825.
doi: 10.1002/anie.201703317
F.B. Rehm, T.J. Tyler, K. Yap, et al., Angew. Chem. Int. Ed. 60(2021) 4004-4008.
doi: 10.1002/anie.202013584
A.C. Conibear, E.E. Watson, R.J. Payne, et al., Chem. Soc. Rev. 47(2018) 9046-9068.
doi: 10.1039/C8CS00573G
R.J. Giesler, P.W. Erickson, M.S. Kay, Curr. Opin. Chem. Biol. 58(2020) 37-44.
doi: 10.1016/j.cbpa.2020.04.003
Y. Tan, H. Wu, T. Wei, et al., J. Am. Chem. Soc. 142(2020) 20288-20298.
doi: 10.1021/jacs.0c09664
Y. Wu, Y.L. Li, W. Cong, et al., Chin. Chem. Lett. 31(2020) 107-110.
doi: 10.1016/j.cclet.2019.05.010
Y. Zheng, F.M. Wu, S.L. Ling, et al., Chin. Chem. Lett. 31(2020) 1267-1270.
doi: 10.1016/j.cclet.2019.09.038
C. Zuo, B.C. Zhang, M. Wu, et al., Chin. Chem. Lett. 31(2020) 693-696.
doi: 10.1016/j.cclet.2019.08.039
N.A. Patil, J.A. Karas, B.J. Turner, et al., Bioconjug. Chem. 30(2019) 793-799.
doi: 10.1021/acs.bioconjchem.8b00908
W. Wang, J. Gao, J. Org. Chem. 85(2020) 1756-1763.
doi: 10.1021/acs.joc.9b02959
E.K. Jang, Y. Koike, Y. Ide, et al., Chem. Commun. 56(2020) 5508-5511.
doi: 10.1039/C9CC08808C
A. Bandyopadhyay, S. Cambray, J. Gao, Chem. Sci. 7(2016) 4589-4593.
doi: 10.1039/C6SC00172F
H. Faustino, M. Silva, L.F. Veiros, et al., Chem. Sci. 7(2016) 5052-5058.
doi: 10.1039/C6SC01520D
K. Li, W. Wang, J. Gao, Angew. Chem. Int. Ed. 59(2020) 14246-14250.
doi: 10.1002/anie.202000837
D.R. Dempsey, H. Jiang, J.H. Kalin, et al., J. Am. Chem. Soc. 140(2018) 9374-9378.
doi: 10.1021/jacs.8b05098
X. Zheng, Z. Li, W. Gao, et al., J. Am. Chem. Soc. 142(2020) 5097-5103.
doi: 10.1021/jacs.9b11875
S.A. Abboud, E. h. Cisse, M. Doudeau, et al., Chem. Sci. 12(2021) 3194-3201.
doi: 10.1039/D0SC06001A
J.C. Maza, D.L. Bader, L. Xiao, et al., J. Am. Chem. Soc. 141(2019) 3885-3892.
doi: 10.1021/jacs.8b10845
A.C. Obermeyer, J.B. Jarman, M.B. Francis, J. Am. Chem. Soc. 136(2014) 9572-9579.
doi: 10.1021/ja500728c
Y.E. Sim, O. Nwajiobi, S. Mahesh, et al., Chem. Sci. 11(2020) 53-61.
doi: 10.1039/C9SC04697F
L. Purushottam, S.R. Adusumalli, U. Singh, et al., Nat. Commun. 10(2019) 2539.
doi: 10.1038/s41467-019-10503-7
Wenbi Wu , Yinchu Dong , Haofan Liu , Xuebing Jiang , Li Li , Yi Zhang , Maling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Lijun Mao , Shuo Li , Xin Zhang , Zhan-Ting Li , Da Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Fengyu Zhang , Yali Liang , Zhangran Ye , Lei Deng , Yunna Guo , Ping Qiu , Peng Jia , Qiaobao Zhang , Liqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655
Huan Yao , Jian Qin , Yan-Fang Wang , Song-Meng Wang , Liu-Huan Yi , Shi-Yao Li , Fangfang Du , Liu-Pan Yang , Li-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154
Xin Zhang , Junyu Chen , Xiang Pei , Linxin Yang , Liang Wang , Luona Chen , Guangmei Yang , Xibo Pei , Qianbing Wan , Jian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Yunfa Dong , Shijie Zhong , Yuhui He , Zhezhi Liu , Shengyu Zhou , Qun Li , Yashuai Pang , Haodong Xie , Yuanpeng Ji , Yuanpeng Liu , Jiecai Han , Weidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Le Ye , Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257
Xingfen Huang , Jiefeng Zhu , Chuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437