Citation: Min Yang, Huiqi Han, Hui Jiang, Shengqing Ye, Xiaona Fan, Jie Wu. Photoinduced reaction of potassium alkyltrifluoroborates, sulfur dioxide and para-quinone methides via radical 1, 6-addition[J]. Chinese Chemical Letters, ;2021, 32(11): 3535-3538. doi: 10.1016/j.cclet.2021.05.007 shu

Photoinduced reaction of potassium alkyltrifluoroborates, sulfur dioxide and para-quinone methides via radical 1, 6-addition

Figures(3)

  • A photoinduced reaction of potassium alkyltrifluoroborates, sulfur dioxide, and para-quinone methides under visible light irradiation at room temperature is developed, giving rise to diarylmethyl alkylsulfones in moderate to good yields. This reaction works well under photocatalysis with a broad substrate scope by using DABCO·(SO2)2 as the source of sulfur dioxide. Mechanistic study shows that this transformation is initiated by alkyl radicals generated in situ from potassium alkyltrifluoroborates in the presence of photocatalyst. The subsequent insertion of sulfur dioxide and radical 1, 6-addition of para-quinone methides with alkylsulfonyl radical intermediates afford the corresponding diarylmethyl alkylsulfones.
  • 加载中
    1. [1]

      (a) M.R. Prinsep, J.W. Blunt, M.H.G. Munro, J. Nat. Prod. 54 (1991) 1068-1076;
      (b) M. Teall, P. Oakley, T. Harrison, et al., Bioorg. Med. Chem. Lett. 15 (2005) 2685-2688;
      (c) L. Legros, J.R. Dehli, C. Bolm, Adv. Synth. Catal. 347 (2005) 19-31;
      (d) I. Churcher, D. Beher, J.D. Best, et al., Bioorg. Med. Chem. Lett. 16 (2006) 280-284;
      (e) Y. Harrak, G. Casula, J. Basset, et al., J. Med. Chem. 53 (2010) 6560-6571.

    2. [2]

      N.S. Simpkins, Sulfones in Organic Synthesis, Pergamon Press, Oxford, 1993.

    3. [3]

      (a) J. Zhou, M.L. Wang, X. Gao, G.F. Jiang, Y.G. Zhou, Chem. Commun. 53 (2017) 3531-3534;
      (b) M. Nambo, Z.T. Ariki, D. Canseco-Gonzalez, D.D. Beattie, C.M. Crudden, Org. Lett. 18 (2016) 2339-2342;
      (c) M. Nambo, C.M. Crudden, Angew. Chem. Int. Ed. 53 (2014) 742-746.

    4. [4]

      (a) D.F. Duxbury, Chem. Rev. 93 (1993) 381-433;
      (b) M.S. Shchepinov, V.A. Korshun, Chem. Soc. Rev. 32 (2003) 170-180;
      (c) V. Nair, S. Thomas, S.C. Mathew, K.G. Abhilash, Tetrahedron 62 (2006) 6731-6747.

    5. [5]

      (a) P. Thirupathi, S.S. Kim, Eur. J. Org. Chem. 2010 (2010) 1798-1808;
      (b) J.L. Zhao, S.H. Guo, J. Qiu, et al., Tetrahedron Lett 57 (2016) 2375-2378;
      (c) R.R. Kuchukulla, F. Li, Z. He, L. Zhou, Q. Zeng, Green Chem 21 (2019) 5808-5812.

    6. [6]

      (a) M.A. Reddy, P.S. Reddy, B. Sreedhar, Adv. Synth. Catal. 352 (2010) 1861-1869;
      (b) K. Xu, L. Li, W. Yan, et al., Green Chem 19 (2017) 4494-4497;
      (c) H. Yamamoto, K. Nakata, Eur. J. Org. Chem. 2019 (2019) 4906-4910.

    7. [7]

      (a) B. Zheng, T. Jia, P.J. Walsh, Org. Lett. 15 (2013) 1690-1693;
      (b) M. Nambo, C.M. Crudden, Angew. Chem. Int. Ed. 53 (2014) 742-746.

    8. [8]

      (a) T. Liu, J. Liu, S. Xia, et al., ACS Omega 3 (2018) 1409-1415;
      (b) X.Y. Guan, L.D. Zhang, P.S. You, S.S. Liu, Z.Q. Liu, Tetrahedron Lett 60 (2019) 244-247;
      (c) Z.Q. Liu, P.S. You, L.D. Zhang, et al., Molecules 25 (2020) 539-553.

    9. [9]

      (a) M.G. Peter, 1989 Angew. Chem. Int. Ed., 28555-570;
      (b) H.U. Wagner, R. Gompper, Quinone Methides, in S. Patai, Z. Rappport (Eds. ), The Chemistry of Quinonoid Compounds, Wiley, New York, 1974, pp. 1145-1178;
      (c) A.B.Q. Turner, 1964 Q. Rev. Chem. Soc., 18347-360;
      (d) D.J. Hart, P.A. Cain, D.A. Evans, 1978 J. Am. Chem. Soc., 1001548-1557.

    10. [10]

      (a) V. Reddy, R. Vijaya Anand, Org. Lett. 17 (2015) 3390-3393;
      (b) F.S. He, J.H. Jin, Z.T. Yang, et al., ACS Catal 6 (2016) 652-656;
      (c) K. Zhao, Y. Zhi, A. Wang, D. Enders, ACS Catal 6 (2016) 657-660;
      (d) N. Dong, Z.P. Zhang, X.S. Xue, X. Li, J.P. Cheng, Angew. Chem. Int. Ed. 55 (2016) 1460-1464;
      (e) Y.H. Deng, X.Z. Zhang, K.Y. Yu, et al., Chem. Commun. 52 (2016) 4183-4186;
      (f) Z.P. Zhang, N. Dong, X. Li, Chem. Commun. 53 (2017) 1301-1304;
      (g) B.M. Sharma, D.R. Shinde, R. Jain, et al., Org. Lett. 20 (2018) 2787-2791;
      (h) Z. Liu, H. Xu, T. Yao, J. Zhang, L. Liu, Org. Lett. 21 (2019) 7539-7543;
      (i) G.M. Nan, X. Li, T.Y. Yao, et al., Org. Biomol. Chem. 18 (2020) 1780-1784;
      (j) J.Y. Wang, W.J. Hao, S.J. Tu, B. Jiang, Org. Chem. Front. 7 (2020) 1743-1778.

    11. [11]

      (a) M. Ke, Q. Song, Adv. Synth. Catal. 359 (2017) 384-389;
      (b) Q.Y. Wu, Q.Q. Min, G.Z. Ao, F. Liu, Org. Biomol. Chem. 16 (2018) 6391-6394;
      (c) Q.Y. Wu, G.Z. Ao, F. Liu, Org. Chem. Front. 5 (2018) 2061-2064;
      (d) W. Zhang, C. Yang, Z.P. Zhang, X. Li, J.P. Cheng, Org. Lett. 21 (2019) 4137-4142;
      (e) H.D. Zuo, W.J. Hao, C.F. Zhu, et al., Org. Lett. 22 (2020) 4471-4477.

    12. [12]

      (a) P. Bisseret, N. Blanchard, 2013 Org. Biomol. Chem., 115393-5398;
      (b) A.S. Deeming, E.J. Emmett, C.S. Richards-Taylor, M.C. Willis, 2014 Synthesis (Mass), 462701-2710;
      (c) G. Liu, C. Fan, J. Wu, 2015 Org. Biomol. Chem., 131592-1599;
      (d) E.J. Emmett, M.C. Willis, 2015 Asian J. Org. Chem., 4602-611;
      (e) D. Zheng, J. Wu, Sulfur Dioxide Insertion Reactions for Organic Synthesis, Nature Springer, Berlin, 2017;
      (f) G. Qiu, K. Zhou, L. Gao, J. Wu, 2018 Org. Chem. Front., 5691-705;
      (g) K. Hofman, N.W. Liu, G. Manolikakes, 2018 Chem. Eur. J., 2411852-11863;
      (h) G. Qiu, L. Lai, J. Cheng, J. Wu, 2018 Chem. Commun., 5410405-10414;
      (i) G. Qiu, K. Zhou, J. Wu, 2018 Chem. Commun., 5412561-12569;
      (j) S. Ye, G. Qiu, J. Wu, 2019 Chem. Commun., 551013-1019;
      (k) S. Ye, M. Yang, J. Wu, 2020 Chem. Commun., 564145-4155;
      (l) S. Ye, X. Li, W. Xie, J. Wu, 2020 Eur. J. Org. Chem. 1274-1287.

    13. [13]

      (a) X. Wang, L. Xue, Z. Wang, Org. Lett. 16 (2014) 4056-4058;
      (b) N.W. Liu, S. Liang, G. Manolikakes, Adv. Synth. Catal. 359 (2017) 1308-1319;
      (c) H. Wang, S. Sun, J. Cheng, Org. Lett. 19 (2017) 5844-5847;
      (d) N. von Wolff, J. Char, X. Frogneux, T. Cantat, Angew. Chem. Int. Ed. 56 (2017) 5616-5619;
      (e) J. Sheng, Y. Li, G. Qiu, Org. Chem. Front. 4 (2017) 95-100;
      (f) Y. Wang, L. Deng, J. Zhou, et al., Adv. Synth. Catal. 360 (2018) 1060-1065;
      (g) A.L. Tribby, I. Rodríguez, S. Shariffudin, N.D. Ball, J. Org. Chem. 82 (2017) 2294-2299.

    14. [14]

      (a) D. Zheng, J. Yu, J. Wu, Angew. Chem. Int. Ed. 55 (2016) 11925-11929;
      (b) J. Zhang, Y. An, J. Wu, Chem. Eur. J. 23 (2017) 9477-9480;
      (c) T. Liu, D. Zheng, Z. Li, J. Wu, Adv. Synth. Catal. 359 (2017) 2653-2659;
      (d) Y. An, J. Wu, Org. Lett. 19 (2017) 6028-6031;
      (e) T. Liu, D. Zheng, Y. Ding, X. Fan, J. Wu, Chem. Asian J. 12 (2017) 465-469;
      (f) Y. An, J. Zhang, H. Xia, J. Wu, Org. Chem. Front. 4 (2017) 1318-1321;
      (g) X. Wang, T. Liu, Q. Zhong, J. Wu, Org. Chem. Front. 4 (2017) 2455-2458;
      (h) T. Liu, D. Zheng, J. Wu, Org. Chem. Front. 4 (2017) 1079-1083;
      (i) J. Zhang, K. Zhou, J. Wu, Org. Chem. Front. 5 (2018) 813-816;
      (j) T. Liu, D. Zheng, Z. Li, J. Wu, Adv. Synth. Catal. 360 (2018) 865-869;
      (k) J. Zhang, F. Zhang, L. Lai, et al., Chem. Commun. 54 (2018) 3891-3894;
      (l) Zhou K., J. Zhang, G. Qiu, J. Wu, Org. Lett. 21 (2019) 275-278;
      (m) X. Gong, X. Li, W. Xie, J. Wu, S. Ye, Org. Chem. Front. 6 (2019) 1863-1867;
      (n) X. Wang, Y. Lin, J.B. Liu, et al., Chin. J. Chem. 38 (2020) 1098-1102;
      (o) F.S. He, Y. Yao, W. Xie, J. Wu, Chem. Commun. 56 (2020) 9469-9472;
      (p) T. Zhu, J. Wu, Org. Lett. 22(18) (2020) 7094-7097;
      (q) J. Huang, F. Ding, Z. Chen, G. Yang, J. Wu, Org. Chem. Front. 8 (2021) 1461-1465;
      (r) Y. Yao, Z. Yin, F.S. He, et al., Chem. Commun. 57 (2021) 2883-2886.

    15. [15]

      (a) K. Zhou, J. Huang, J. Wu, G. Qiu, Chin. Chem. Lett. 32 (2021) 37-39;
      (b) T. Liu, Y. Ding, X. Fan, J. Wu, Org. Chem. Front. 5 (2018) 3153-3157;
      (c) S. Ye, X. Li, W. Xie, J. Wu, Asian J. Org. Chem. 8 (2019) 893-898;
      (d) X. Gong, M. Yang, J.B. Liu, F.S. He, J. Wu, Org. Chem. Front. 7 (2020) 938-943.

    16. [16]

      (a) X. Wang, Y. Kuang, S. Ye, J. Wu, Chem. Commun. 55 (2019) 14962-14964;
      (b) T. Zhu, J. Shen, Y. Sun, J. Wu, Chem. Commun. 57 (2021) 915-918.

    17. [17]

      (a) X. Wang, M. Yang, W. Xie, X. Fan, J. Wu, Chem. Commun. 55 (2019) 6010-6013;
      (b) X. Wang, H. Li, G. Qiu, J. Wu, Chem. Commun. 55 (2019) 2062-2065;
      (c) X. Wang, M. Yang, W. Xie, X. Fan, J. Wu, Chem. Commun. 55 (2019) 6010-6013;
      (d) X. Gong, M. Yang, J.B. Liu, et al., Green Chem 22 (2020) 1906-1910.

    18. [18]

      (a) Y. Zong, Y. Lang, M. Yang, et al., Org. Lett. 21 (2019) 1935-1938;
      (b) F.S. He, M. Yang, S. Ye, J. Wu, Chin. Chem. Lett. 32 (2021) 461-464;
      (c) K. Zhou, J. Chen, J. Wu, Chin. Chem. Lett. 31 (2020) 2996-2998;
      (d) J. Chen, L. Wu, J. Wu, Chin. Chem. Lett. 31 (2020) 2993-2995.

    19. [19]

      (a) D. Richter, N. Hampel, T. Singer, A.R. Ofial, H. Mayr, Eur. J. Org. Chem. (2009) 3203-3211;
      (b) Y.J. Fan, L. Zhou, S. Li, Org. Chem. Front. 5 (2018) 1820-1824.

    20. [20]

      K.K. Chauhan, C.G. Frost, I. Love, D. Waite, Synlett 10 (1999) 1743-1744.
       

    21. [21]

      P. Goswami, S. Sharma, G. Singh, R.V. Anand, J. Org. Chem. 83 (2018) 4213-4220.

  • 加载中
    1. [1]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    2. [2]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    3. [3]

      Hui-Xian JiangZhi-Tao LiuPei XuXu Zhu . Synthetic application of oxalate salts for visible-light-induced radical transformations. Chinese Chemical Letters, 2025, 36(12): 111224-. doi: 10.1016/j.cclet.2025.111224

    4. [4]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    5. [5]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    6. [6]

      Pei XuTian-Zi HaoZhi-Tao LiuYi-Qin LiuHui-Xian JiangDong GuoXu Zhu . Visible-light-induced dual catalysis for divergent reduction of nitro compounds with CO2 radical anion. Chinese Chemical Letters, 2025, 36(10): 110899-. doi: 10.1016/j.cclet.2025.110899

    7. [7]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    8. [8]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    9. [9]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    10. [10]

      Xinyun LiuLong YuanXiaoli PengShilan LiShengdong JingShengjun LuHua LeiYufei ZhangHaosen Fan . MOF derived phosphorus doped cerium dioxide nanorods modified separator as efficient polysulfide barrier for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110369-. doi: 10.1016/j.cclet.2024.110369

    11. [11]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    12. [12]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    13. [13]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    14. [14]

      Jia PengGuo-Ping LuoChao WuCongyang Wang . Visible light-induced deuteration of arenes via thianthrenation. Chinese Chemical Letters, 2025, 36(8): 111255-. doi: 10.1016/j.cclet.2025.111255

    15. [15]

      Xia MiChaoyang WangJingyu ZhangRemi ChauvinXiuling Cui . Recent progress in the visible-light-promoted synthesis of phenanthridines. Chinese Chemical Letters, 2025, 36(11): 111485-. doi: 10.1016/j.cclet.2025.111485

    16. [16]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    17. [17]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    18. [18]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    19. [19]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    20. [20]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

Metrics
  • PDF Downloads(17)
  • Abstract views(1300)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return