Citation: Taimin Wang, Xuecheng Zhu, Qingqing Tao, Wei Xu, Haiyan Sun, Ping Wu, Bin Cheng, Hongbin Zhai. Synthesis of tetrasubstituted thiophenes from pyridinium 1, 4-zwitterionic thiolates and modified activated alkynes[J]. Chinese Chemical Letters, ;2021, 32(12): 3972-3975. doi: 10.1016/j.cclet.2021.04.021 shu

Synthesis of tetrasubstituted thiophenes from pyridinium 1, 4-zwitterionic thiolates and modified activated alkynes

Figures(4)

  • Pyridinium 1, 4-zwitterionic thiolates were applied to a formal [3 + 2] annulation reaction with modified activated alkynes, affording various tetrasubstituted thiophenes with aryl, alkenyl, alkyl or silyl group at the special position. The structural modification of alkyne substrates enabled the synthesis of diverse thiophenes to be achieved using the pyridinium 1, 4-zwitterionic thiolates as the sulfur-containing building blocks. This approach is metal-free and catalyst-free.
  • 加载中
    1. [1]

      L. Moafi, S. Ahadi, H.R. Khavasi, A. Bazgir, Synthesis (Mass) (2011) 1399–1402.
       

    2. [2]

      (a) B. Cheng, Y. Li, T. Wang, et al., Chem. Commun. 55 (2019) 14606–14608;
      (b) B. Cheng, X. Duan, Y. Li, et al., Eur. J. Org. Chem. (2020) 1896–1906;
      (c) S. Zhai, X. Zhang, B. Cheng, et al., Chem. Commun. 56 (2020) 3085–3088;
      (d) B. Cheng, B. Bao, W. Xu, et al., Org. Biomol. Chem. 18 (2020) 2949–2955;
      (e) B. Cheng, Y. Li, T. Wang, et al., J. Org. Chem. 85 (2020) 6794–6802;
      (f) B. Cheng, X. Zhang, Y. Li, et al., Chem. Commun. 56 (2020) 8396–8399;
      (g) B. Cheng, Y. Li, X. Zhang, et al., Org. Lett. 22 (2020) 5817–5821;
      (h) B. Cheng, H. Li, S. Duan, et al., Org. Biomol. Chem. 18 (2020) 6253–6257;
      (i) B. Cheng, X. Zhang, H. Li, et al., Adv. Synth. Catal. 362 (2020) 4668–4672.

    3. [3]

      (a) B. Godoi, R.F. Schumacher, G. Zeni, Chem. Rev. 111 (2011) 2937–2980;
      (b) K. Schaper, T.J.J. Müeller, Top. Curr. Chem. 376 (2018) 38;
      (c) F. Zamberlan, A. Fantinati, C. Trapella, Eur. J. Org. Chem. (2018) 3248–3264;
      (d) R. Mancuso, B. Gabriele, Molecules 19 (2014) 15687–15719;
      (e) J.A. Joule, Phosphorus Sulfur Silicon Relat. Elem. 188 (2013) 287–316;
      (f) S. Rajappa, A.R. Deshmunkh, Thiophenes and their benzo derivatives: reactivity, in: A.R. Katritzky, C.A. Ramsden, E.F.V. Scriven, R.J.K. Taylor (Eds. ), Comprehensive Heterocyclic Chemistry III, Elsevier Science, 2008, pp. 741–841;
      (g) S. Gronowitz, A.B. Hornfeldt, in: Thiophenes, Elsevier, Oxford, UK, 2004;
      (h) K.J. Hale, S. Manaviazar, Thiophenes, hydrothiophenes, benzothiophenes, and related compounds, in: M. Sainsbury (Ed. ), Second Supplements to the 2nd Edition of Rodd's Chemistry of Carbon Compounds, Elsevier, 2008. Vol. IV, Part A, 337-456;
      (i) L. Chen, H. Min, W. Zeng, et al., Org. Lett. 20 (2018) 7392–7395;
      (j) P. Fricero, L. Bialy, W. Czechtizky, M. Méndez, J.P.A. Harrity, Org. Lett. 20 (2018) 198–200;
      (k) M. Adib, S. Rajai-Daryasarei, R. Pashazadeh, et al., Eur. J. Org. Chem. (2018) 3001–3016;
      (l) J.K. Kim, H.J. Lim, K.C. Jeong, S.J. Park, Beilstein. J. Org. Chem. 14 (2018) 243–252;
      (m) D. Kurandina, V. Gevorgyan, Org. Lett. 18 (2016) 1804–1807;
      (n) S.N. Sahu, M.K. Gupta, S. Singh, et al., RSC Adv 5 (2015) 36979–36986;
      (o) A. Acharya, G. Parameshwarappa, S. Bonagiri, H. Ila, J. Org. Chem. 80 (2015) 414–427;
      (p) Z. Wang, Z. Qu, F. Xiao, H. Huang, G.J. Deng, Adv. Synth. Catal. 360 (2018) 796–800;
      (q) L.S. Ge, Z.L. Wang, X.L. An, X. Luo, W.P. Deng, Org. Biomol. Chem. 12 (2014) 8473–8479;
      (r) M. Adib, S. Rajai-Daryasarei, R. Pashazadeh, M. Jahani, M. Amanlou, Synlett 29 (2018) 1583–1588;
      (s) G. Bharathiraja, G. Sathishkannan, T. Punniyamurthy, J. Org. Chem. 81 (2016) 2670–2674.

    4. [4]

      (a) K. Bozorov, L.F. Nie, J. Zhao, H.A. Aisa, Eur. J. Med. Chem. 140 (2017) 465–493;
      (b) M. Krátký, J. Vinsova, Curr. Top. Med. Chem. 16 (2016) 2921–2952;
      (c) D. Gramec, L.P. Mašič, M.S. Dolenc, Chem. Res. Toxicol. 27 (2014) 1344–1358;
      (d) K.K. Jha, S. Kumar, I. Tomer, R. Mishra, J. Pharm. Res. 5 (2012) 560–566.

    5. [5]

      (a) C. Zhang, X. Zhu, Acc. Chem. Res. 50 (2017) 1342–1350;
      (b) G. Turkoglu, M.E. Cinar, T. Ozturk, Top. Curr. Chem. 375 (2017) 84;
      (c) S.C. Rasmussen, S.J. Evenson, C.B. McCausland, Chem. Commun. 51 (2015) 4528–4543;
      (d) A. Mishra, C.Q. Ma, P. Bäuerle, Chem. Rev. 109 (2009) 1141–1276.

    6. [6]

      (a) B.H. Lipshutz, Chem. Rev. 86 (1986) 795–819;
      (b) G. Rassu, F. Zanardi, L. Battistini, G. Casiraghi, Chem. Soc. Rev. 29 (2000) 109–118;
      (c) C. Bianchini, A. Meli, Synlett 6 (1997) 643–649;
      (d) R. Kumar, R.K. Rej, S. Nanda, Tetrahedron Asymmetry 26 (2015) 751–759.

    7. [7]

      (a) X. Jiang, in: Sulfur Chemistry, Springer, 2019;
      (b) M. Feng, B. Tang, S.H. Liang, X. Jiang, Curr. Top. Med. Chem. 16 (2016) 1200–1216;
      (c) N. Wang, P. Saidhareddy, X. Jiang, Nat. Prod. Rep. 37 (2020) 246–275.

    8. [8]

      W.P. Ding, G.P. Zhang, Y.J. Jiang, et al., Org. Lett. 21 (2019) 6805–6810.  doi: 10.1021/acs.orglett.9b02431

  • 加载中
    1. [1]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    4. [4]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    5. [5]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    6. [6]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    7. [7]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    8. [8]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    9. [9]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    10. [10]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    11. [11]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    12. [12]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    13. [13]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    14. [14]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    15. [15]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    16. [16]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    17. [17]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    18. [18]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    19. [19]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    20. [20]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

Metrics
  • PDF Downloads(5)
  • Abstract views(544)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return