Citation: Qing-Qing Han, Yuan-Yuan Sun, Shao-Hui Yang, Jing-Cheng Song, Zu-Li Wang. Persulfate promoted tandem radical cyclization of ortho-cyanoarylacrylamides with oxamic acids for construction of carbamoyl quinoline-2, 4-diones under metal-free conditions[J]. Chinese Chemical Letters, ;2021, 32(11): 3632-3635. doi: 10.1016/j.cclet.2021.04.019 shu

Persulfate promoted tandem radical cyclization of ortho-cyanoarylacrylamides with oxamic acids for construction of carbamoyl quinoline-2, 4-diones under metal-free conditions

    * Corresponding author.
    E-mail address: wangzuli09@tsinghua.org.cn (Z.-L. Wang).
  • Received Date: 2 March 2021
    Revised Date: 7 April 2021
    Accepted Date: 12 April 2021
    Available Online: 17 April 2021

Figures(4)

  • An efficient and practical methods for the synthesis of carbamoyl quinoline-2, 4-diones via the reaction of ortho-cyanoarylacrylamides with oxamic acids was described. This cyclic reaction could be performed efficiently under metal free conditions. Various products with functional groups could be obtained with moderate to high yields via radical mechanism.
  • 加载中
    1. [1]

      (a) S. Han, F.F. Zhang, H.Y. Qian, et al., J. Med. Chem. 58 (2015) 5751-5769;
      (b) Y.X. Liu, H.P. Zhao, Z.W. Wang, et al., Mol. Divers. 17 (2013) 701-710;
      (c) J.L. McCormick, T.C. McKee, J.H. Cardellina, M.R. Boyd, J. Nat. Prod. 59 (1996) 469-471;
      (d) Z. Liu, X. Zhang, H. Zhang, et al., Chin. J. Org. Chem. 40 (2020) 2755;
      (e) Q.W. Gui, F. Teng, S.N. Ying, et al., Chin. Chem. Lett. 31 (2020) 3241-3244;
      (f) Y.F. Si, K. Sun, X.L. Chen, et al., Org. Lett. 22 (2020) 6960-6965.

    2. [2]

      (a) T. Yang, W.J. Xia, J.Q. Shang, et al., Org. Lett. 21 (2019) 444-447;
      (b) L.J. Wu, Y. Yang, R.J. Song, et al., Chem. Commun. 54 (2018) 1367-1370;
      (c) Y. Zhang, T. Zhang, H. Zhan, X. Li, Chin. J. Catal. 35 (2014) 1840-1845;
      (d) L. Tao, C. Li, Y. Ren, et al., Chin. J. Catal. 40 (2019) 1548-1556;
      (e) S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. 30 (2019) 2287-2290;
      (f) H.Y. Guo, Y. Yu, Chin. Chem. Lett. 21 (2010) 1435-1438;
      (g) Z. Wang, L. Chen, G. Mao, C. Wang, Chin. Chem. Lett. 31 (2020) 1890-1894.

    3. [3]

      (a) L. Xiong, H. Hu, C.W. Wei, B. Yu, Eur. J. Org. Chem. 2020 (2020) 1588-1597;
      (b) J. Xuan, A. Studer, Chem. Soc. Rev. 46 (2017) 4329-4346;
      (c) F. Zhao, X. Jia, D. Wang, et al., Chin. J. Org. Chem. (2017) 37;
      (d) X.X. Meng, Q.Q. Kang, J.Y. Zhang, et al., Green Chem 22 (2020) 1388-1392;
      (e) Z. Wang, W.M. He, Chin. J. Org. Chem. 39 (2019) 3594-3595;
      (f) G.H. Li, Q.Q. Han, Y.Y. Sun, et al., Chin. Chem. Lett. 31 (2020) 3255-3258;
      (g) D. Dong, Y. Sun, G. Li, et al., Chin. J. Org. Chem. 40 (2020) 4071-4086;
      (h) Z.Y. Gan, G.Q. Li, X.B. Yang, et al., Sci. China Chem. 63 (2020) 1652-1658;
      (i) K. Sun, G. Li, Y. Li, et al., Adv. Synth. Catal. 362 (2020) 1947-1954;
      (j) W.H. Bao, Z. Wang, X. Tang, et al., Chin. Chem. Lett. 30 (2019) 2259-2262;
      (k) L. Wang, Y. Zhang, M. Zhang, et al., Tetrahedron Lett 60 (2019) 1845-1848;
      (l) Y. Zhang, K. Sun, Q. Lv, et al., Chin. Chem. Lett. 30 (2019) 1361-1368;
      (m) X. Ren, Z. Lu, Chin. J. Catal. 40 (2019) 1003-1019;
      (n) R. Yi, L. Qian, B. Wan, Chin. J. Catal. 40 (2019) 177-183;
      (o) G.H. Li, Q.Q. Han, Y.Y. Sun, et al., Chin. Chem. Lett. 31 (2020) 3255-3258;
      (p) Q.W. Gui, F. Teng, Z.C. Li, et al., Chin. Chem. Lett. 32 (2021) 1907-1910;
      (q) W.H. Bao, Z. Wang, Z. Cao, et al., Adv. Synth. Catal. 363 (2021) 757-761;
      (r) D.Q. Dong, H. Yang, J.L. Shi, et al., Org. Chem. Front. 7 (2020) 2538-2575;
      (s) D.Q. Dong, Q.Q. Han, S.H. Yang, et al., ChemistrySelect 5 (2020) 13103-13134.

    4. [4]

      T. Yang, W.J. Xia, B. Zhou, et al., Eur. J. Org. Chem. 2019 (2019) 5749–5755.  doi: 10.1002/ejoc.201900918

    5. [5]

      Y.M. Li, T. Yang, J.L. Zhou, et al., Synthesis(Mass)50 (2018) 3460–3466.  doi: 10.1055/s-0037-1610070

    6. [6]

      F. Ding, Y. Fang, Y. Jiang, K. Lin, L. Shi, Chem. Asian J. 13 (2018) 636–640.  doi: 10.1002/asia.201701780

    7. [7]

      H. Sun, Y. Jiang, Y.S. Yang, et al., Org. Biomol. Chem. 17 (2019) 6629–6638.  doi: 10.1039/c9ob01213c

    8. [8]

      (a) S.S. Wang, H. Fu, G. Wang, M. Sun, Y.M. Li, RSC Adv. 6 (2016) 52391-52394;
      (b) S.S. Wang, H. Fu, Y. Shen, M. Sun, Y.M. Li, J. Org. Chem. 81 (2016) 2920-2929.

    9. [9]

      S. Wang, X. Huang, Q. Wang, et al., RSC Adv. 6 (2016) 11754–11757.  doi: 10.1039/C5RA27878C

    10. [10]

      H. Fu, S.S. Wang, Y.M. Li, Adv. Synth. Catal. 358 (2016) 3616–3626.  doi: 10.1002/adsc.201600693

    11. [11]

      Y.M. Li, S.S. Wang, F. Yu, Y. Shen, K.J. Chang, Org. Biomol. Chem. 13 (2015) 5376–5380.  doi: 10.1039/C5OB00617A

    12. [12]

      (a) K.J. Liu, T.Y. Zeng, J.L. Zeng, et al., Chin. Chem. Lett. 30 (2019) 2304-2308;
      (b) L.Y. Xie, Y.S. Liu, H.R. Ding, et al., Chin. J. Catal. 41 (2020) 1168-1173;
      (c) Y. Wu, Y.W. Lin, W.M. He, Chin. Chem. Lett. 31 (2020) 2999-3000;
      (d) D.Q. Dong, W.J. Chen, Y. Yang, X. Gao, Z.L. Wang, Chemistryselect 4 (2019) 2480-2483;
      (e) J.Y. Chen, H.Y. Wu, Q.W. Gui, et al., Chin. J. Catal. 42 (2021) 1445-1450;
      (f) D.Q. Dong, W.J. Chen, D.M. Chen, et al., Chin. J. Org. Chem. 39 (2019) 3190-3198;
      (g) X.Y. Li, Y. Liu, X.L. Chen, et al., Green Chem. 22 (2020) 4445-4449;
      (h) K.J. Liu, Z. Wang, L.H. Lu, et al., Green Chem. 23 (2021) 496-500;
      (i) J. Jiang, F. Xiao, W.M. He, L. Wang, Chin. Chem. Lett. 32 (2021) 1637-1644.

    13. [13]

      (a) J.F. Zhao, X.H. Duan, L.N. Guo, Chin. J. Org. Chem. 37 (2017) 2498-2511;
      (b) S. Mandal, T. Bera, G. Dubey, J. Saha, J.K. Laha, ACS Catal. 8 (2018) 5085-5144;
      (c) number>L.Y. Xie, S. Peng, T.G. Fan, et al., Sci. Chin. Chem. 62 (2019) 460-464;
      (d) Z. Cao, Q. Zhu, Y.W. Lin, W.M. He, Chin. Chem. Lett. 30 (2019) 2132-2138;
      (e) W. Wu, S. Yi, W. Huang, D. Luo, H. Jiang, Org. Lett. 19 (2017) 2825-2828;
      (f) J. Liu, D. Yu, Y. Yang, et al., Org. Lett. 22 (2020) 4844-4847;
      (g) Q.Q. Han, G.H. Li, Y.Y. Sun, et al., Tetrahedron Lett. 61 (2020) 151704;
      (h) H.B. Qiu, P.C. Guo, L. Yuan, G.P. Sheng, Chin. Chem. Lett. 31 (2020) 2614-2618;
      (i) Y. Li, W. Xiang, T. Zhou, et al., Chin. Chem. Lett. 31 (2020) 2757-2761;
      (j) Z. Chen, Q. Huang, B. Huang, F. Zhang, C. Li, Chin. J. Catal. 40 (2019) 38-42.

    14. [14]

      (a) D. Dong, G. Li, D. Chen, et al., Chin. J. Org. Chem. 40 (2020) 1766-1771;
      (b) D.M. Chen, Y.Y. Sun, Q.Q. Han, Z.L. Wang, Tetrahedron Lett. 61 (2020) 152482;
      (c) S.Q. Yan, D.Q. Dong, C.W. Xie, W.S. Wang, Z.L. Wang, Chin. J. Org. Chem. 39 (2019) 2560-2566;
      (d) G.H. Li, D.Q. Dong, Y. Yang, X.Y. Yu, Z.L. Wang, Adv. Synth. Catal. 361 (2019) 832-835.

    15. [15]

      (a) J.W. Yuan, J.L. Zhu, H.L. Zhu, et al., Org. Chem. Front. 7 (2020) 273-285;
      (b) J.W. Yuan, Q. Chen, C. Li, et al., Org. Biomol. Chem. 18 (2020) 2747-2757;
      (c) M.T. Westwood, C.J.C. Lamb, D.R. Sutherland, A.L. Lee, Org. Lett. 21 (2019) 7119-7123;
      (d) Q.Q. Han, D.M. Chen, Z.L. Wang, et al., Chin. Chem. Lett. 32 (2021) 2559-2561;
      (e) D. Chen, Y. Sun, D. Dong, Q. Han, Z. Wang, Chin. J. Org. Chem. 40 (2020) 4267-4273;
      (f) D.Q. Dong, L.X. Li, G.H. Li, et al., Chin. J. Catal. 40 (2019) 1494-1498;
      (g) Z. Gan, X. Zhu, Q. Yan, X. Song, D. Yang, Chin. Chem. Lett. 32 (2020) 1705-1708;
      (h) J.Y. Chen, Y.W. Lin, W.M. He, Chin. Chem. Lett. 31 (2020) 2989-2990;
      (i) K. Sun, S.J. Li, X.L. Chen, et al., Chem. Commun. 55 (2019) 2861-2864;
      (j) L.Y. Xie, S. Peng, L.H. Yang, et al., Green Chem. 23 (2021) 374-378;
      (k) M.M. Xu, L.Y. Kou, X.G. Bao, X.P. Xu, S.J. Ji, Chin. Chem. Lett. 32 (2021) 1915-1919.

  • 加载中
    1. [1]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    4. [4]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    5. [5]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    6. [6]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    7. [7]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    8. [8]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    9. [9]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    10. [10]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    11. [11]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    12. [12]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    13. [13]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    14. [14]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    15. [15]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    16. [16]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    17. [17]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    18. [18]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    19. [19]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    20. [20]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

Metrics
  • PDF Downloads(9)
  • Abstract views(527)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return