Citation: Lingling Liu, Hongli Wu, Genping Huang. Mechanism and selectivity of nickel-catalyzed [3 + 2] cycloaddition of cyclopropenones and α, β-unsaturated ketones: A computational study[J]. Chinese Chemical Letters, ;2021, 32(10): 3015-3018. doi: 10.1016/j.cclet.2021.04.006 shu

Mechanism and selectivity of nickel-catalyzed [3 + 2] cycloaddition of cyclopropenones and α, β-unsaturated ketones: A computational study

    * Corresponding author.
    E-mail address: gphuang@tju.edu.cn(G. Huang).
  • Received Date: 25 February 2021
    Revised Date: 31 March 2021
    Accepted Date: 1 April 2021
    Available Online: 3 April 2021

Figures(5)

  • Density functional theory calculations have been performed to investigate the nickel-catalyzed [3 + 2] cycloaddition of cyclopropenones and α, β-unsaturated ketones. The computations show that the overall catalytic cycle consists of four major steps, including: (1) C-C oxidative addition of the cyclopropenone to afford the four-membered nickelacycle, (2) isomerization, (3) migratory insertion via a 4, 1-insertion fashion, and (4) C-C reductive elimination to deliver the [3 + 2] cycloaddition product. The enantioselectivity is mainly attributed to the π-π interaction between the diphenylcyclopropenone moiety and the phenyl substituent of the oxazoline ring of the ligand. The chemoselectivity of the C = O versus C = C insertion was rationalized in terms of the steric effect.
  • 加载中
    1. [1]

      (a) R. Peng, Y. Xu, Q. Cao, Chin. Chem. Lett. 29 (2018) 1465-1474;
      (b) L. Wang, Z. Yu, Chin. J. Org. Chem. 40 (2020) 3536-3558;
      (c) A. Roglans, A. Pla-Quintana, M. Sola, Chem. Rev. 121 (2021) 1894-1979;
      (d) J. Wang, S.A. Blaszczyk, X. Li, et al., Chem. Rev. 121 (2021) 110-139.

    2. [2]

      (a) P. Chen, B.A. Billett, T. Tsukamoto, et al., ACS Catal. 7 (2017) 1340-1360;
      (b) R. Vicente, Chem. Rev. 121 (2021) 162-226;
      (c) M. Murakami, N. Ishida, Chem. Rev. 121 (2021) 264-299.

    3. [3]

      (a) M. Murakami, S. Ashida, T. Matsuda, J. Am. Chem. Soc. 127 (2005) 6932-6933;
      (b) A. Schuster-Haberhauer, R. Gleiter, O. Körner, Organometallics 27 (2008) 1361-1366;
      (c) P. Chen, T. Xu, G. Dong, Angew. Chem. Int. Ed. 53 (2014) 1674-1678;
      (d) P. Chen, J. Sieber, C.H. Senanayake, et al., Chem. Sci. 6 (2015) 5440-5445;
      (e) T. Kondo, Y. Kaneko, Y. Taguchi, et al., J. Am. Chem. Soc. 124 (2002) 6824-6825;
      (f) T. Lin, C. Zhu, P. Zhang, et al., Angew. Chem. Int. Ed. 55 (2016) 10844-10848;
      (g) Q. Li, G. Jiang, L. Jiao, et al., Org. Lett. 12 (2010) 1332-1335.

    4. [4]

      D. Bai, Y. Yu, H. Guo, et al., Angew. Chem. Int. Ed. 59(2020) 2740-2744.

    5. [5]

      (a) B. Mao, M. Fañanas-Mastral, B.L. Feringa, Chem. Rev. 117 (2017) 10502-10566;
      (b) S. Wang, Y. Liu, N. Cramer, Angew. Chem. Int. Ed. 58 (2019) 18136-18140;
      (c) J. Ji, L. Lin, Q. Tang, et al., ACS Catal. 7 (2017) 3763-3767;
      (d) G.L. Hamilton, E.J. Kang, M. Mba, et al., Science 317 (2007) 496-499.

    6. [6]

      (a) Y. Li, Z. Lin, Organometallics 32 (2013) 3003-3011;
      (b) X. Hong, D. Holte, D.C.G. Götz, et al., J. Org. Chem. 79 (2014) 12177-12184;
      (c) Y. Liu, Y. Tang, Y. Jiang, et al., ACS Catal. 7 (2017) 1886-1896;
      (d) S. Yang, Y. Xu, J. Li, Org. Lett. 18 (2016) 6244-6247;
      (e) Y. Luo, C. Shan, Song Liu, et al., ACS Catal. 9 (2019) 10876-10886;
      (f) I. Nohira, S. Liu, R. Bai, et al., J. Am. Chem. Soc. 142 (2020) 17306-17311;
      (g) Y. Li, Y. Luo, L. Peng, et al., Nat. Commun. 11 (2020) 1-13.

    7. [7]

      (a) Z. Zhang, J. Zhang, F.K. Sheong, et al., ACS Catal. 10 (2020) 12454-12465;
      (b) J. Guo, H. Wang, S. Xing, et al., Chem 5 (2019) 1-15;
      (c) M. Yuan, Z. Song, S.O. Badir, et al., J. Am. Chem. Soc. 142 (2020) 7225-7234;
      (d) L. Hu, H. Chen, J. Am. Chem. Soc. 139 (2017) 15564-15567;
      (e) Y. Yu, G. Luo, J. Yang, Catal. Sci. Technol. 9 (2019) 1879-1890;
      (f) L. Lin, C. Daia, J. Zhu, Org. Chem. Front. 8 (2021) 1531-1543;
      (g) S. Li, Y. Lan, Chem. Commun. 56 (2020) 6609-6619.

    8. [8]

      Y. Luo, C. Shan, S. Liu, ACS Catal. 9(2019) 10876-10886.

    9. [9]

      H. Zou, Z. Wang, G. Huang, Chem. Eur. J. 23(2017) 12593-12603.

    10. [10]

      (a) L. Xu, Q. Zhu, G. Huang, B. Cheng, Y. Xia, J. Org. Chem. 77 (2012) 3017-3024;
      (b) W. Guo, Y. Xia, J. Org, Chem. 80 (2015) 8113-8121;
      (c) W. Guo, T. Zhou, Y. Xia, Organometallics 34 (2015) 3012-3020;
      (d) L. Xu, X. Zhang, M.S. McCammant, et al., J. Org. Chem. 81 (2016) 7604-7611;
      (e) Y. Liu, Y. Tang, Y.Y. Jiang, et al., ACS Catal. 7 (2017) 1886-1896;
      (f) G. Lu, R.Y. Liu, Y. Yang, et al., J. Am. Chem. Soc. 139 (2017) 16548-16555;
      (g) X. Lv, F. Huang, Y.B. Wu, G. Lu, Catal. Sci. Technol. 8 (2018) 2835-2840;
      (h) X.W. Chen, L. Zhu, Y.Y. Gui, et al., J. Am. Chem. Soc. 141 (2019) 18825-18835;
      (i) X. Li, X. Ren, H. Wu, et al., Chin. Chem. Lett. 32 (2021) 9-12;
      (j) H. Zou, Z.L. Wang, Y. Cao, G. Huang, Chin. Chem. Lett. 29 (2018) 1355-1358;
      (k) X. Li, H. Wu, Z. Wu, G. Huang, J. Org. Chem. 84 (2019) 5514-5523;
      (l) G. Huang, P. Liu, ACS Catal. 6 (2016) 809-820;
      (m) M. Zhang, G. Huang, Dalton Trans. 45 (2016) 3552-3557;
      (n) L. Hu, Z. Wu, G. Huang, Org. Lett. 20 (2018) 5410-5413.

  • 加载中
    1. [1]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    2. [2]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    3. [3]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    4. [4]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    5. [5]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    6. [6]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    7. [7]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    8. [8]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    9. [9]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    10. [10]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    11. [11]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    12. [12]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    13. [13]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    14. [14]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    15. [15]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    16. [16]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    17. [17]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    20. [20]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

Metrics
  • PDF Downloads(10)
  • Abstract views(621)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return