Recent advances in BiOBr-based photocatalysts for environmental remediation
-
* Corresponding authors.
E-mail addresses: quyang@hlju.edu.cn (Y. Qu), jinglq@hlju.edu.cn (L. Jing).
Citation:
Lingyou Meng, Yang Qu, Liqiang Jing. Recent advances in BiOBr-based photocatalysts for environmental remediation[J]. Chinese Chemical Letters,
;2021, 32(11): 3265-3276.
doi:
10.1016/j.cclet.2021.03.083
A. Kumar, S.K. Sharma, G. Sharma, et al., J. Hazard. Mater. 364 (2019) 429-440.
doi: 10.1016/j.jhazmat.2018.10.060
M. Cybularczyk-Cecotka, J. Szczepanik, M. Giedyk, Nat. Catal. 3 (2020) 872-886.
doi: 10.1038/s41929-020-00515-8
M. Pálmai, E.M. Zahran, S. Angaramo, et al., J. Mater. Chem. A 2 (2017) 529-534.
T.X. Xu, J.P. Wang, Y. Cong, et al., Chin. Chem. Lett. 31 (2020) 1022-1025.
doi: 10.1016/j.cclet.2019.11.038
H. Song, X.G. Meng, S.Y. Wang, et al., J. Am. Chem. Soc. 141 (2019) 20507-20515.
doi: 10.1021/jacs.9b11440
F. You, J.W. Wan, J. Qi, et al., Angew. Chem. 132 (2020) 731-734.
doi: 10.1002/ange.201912069
D.W. Su, J. Ran, Z.W. Zhuang, et al., Sci. Adv. 6 (2020) eaaz8447.
doi: 10.1126/sciadv.aaz8447
Y. Wang, Z.Z. Zhang, L.N. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 14595-14598.
doi: 10.1021/jacs.8b09344
S. Song, J.F. Qu, P.J. Han, et al., Nat. Commun. 11 (2020) 1-10.
J.L. He, W.H. Fang, R. Long, O.V. Prezhdo, J. Am. Chem. Soc. 141 (2019) 5798-5807.
doi: 10.1021/jacs.8b13392
S. Nadupalli, J. Kreisel, T. Granzow, Sci. Adv. 5 (2019) eaau9199.
doi: 10.1126/sciadv.aau9199
Y.Z. Wei, J.Y. Wang, R.B. Yu, J.W. Wan, D. Wang, Angew. Chem. In. Ed. 58 (2019) 1422-1426.
doi: 10.1002/anie.201812364
J.Z. Liao, K.L. Li, H. Ma, et al., Chin. Chem. Lett. 31 (2020) 2737-2741.
doi: 10.1016/j.cclet.2020.03.081
M. Shi, G.N. Li, J.M. Li, et al., Angew. Chem. In. Ed. 59 (2020) 6590-6595.
doi: 10.1002/anie.201916510
M.D. Sun, Z.M. Zhang, Q.J. Shi, et al., Chin. Chem. Lett. 32 (2021) 2419-2422.
doi: 10.1016/j.cclet.2021.01.013
J.D. Hu, D.Y. Chen, Z. Mo, et al., Angew. Chem. Int. Ed. 58 (2019) 2073-2077.
doi: 10.1002/anie.201813417
Y.C. Zhou, P. Wang, H.F. Fu, C. Zhao, C.C. Wang, Chin. Chem. Lett. 31 (2020) 2645-2650.
doi: 10.1016/j.cclet.2020.02.048
J. Kim, S.H. Lee, F. Tieves, et al., Sci. Adv. 5 (2019) eaax0501.
doi: 10.1126/sciadv.aax0501
F. Chen, H.W. Huang, Y.H. Zhang, T.R. Zhang, Chin. Chem. Lett. 28 (2017) 2244-2250.
doi: 10.1016/j.cclet.2017.09.017
F. Yang, Y. Qu, L.Q. Jing, Chin. Chem. Lett. 3 (2020) 2784-2788.
X.Q. Li, J.D. Wang, Z.M. Hu, M.J. Li, K. Ogino, Chin. Chem. Lett. 29 (2018) 166-170.
doi: 10.1016/j.cclet.2017.05.020
Y. Zhang, J. Guo, L. Shi, et al., Sci. Adv. 3 (2017) e1701162.
doi: 10.1126/sciadv.1701162
X.Y. Wang, L.J. Chen, S.Y. Chong, et al., Nat. Chem. 10 (2018) 1180-1189.
doi: 10.1038/s41557-018-0141-5
Y.W. Huang, N. Zhang, Z.J. Wu, X.Q. Xie, J. Mater. Chem. A 8 (2020) 4978-4995.
doi: 10.1039/C9TA13589H
S.R. Kim, W.K. Jo, J. Hazard. Mater. 380 (2019) 120866.
doi: 10.1016/j.jhazmat.2019.120866
L.L. Liang, S.W. Gao, J.C. Zhu, et al., Chem. Eng. J. 391 (2020) 123599.
doi: 10.1016/j.cej.2019.123599
H. Wang, D.Y. Yong, S.C. Chen, et al., J. Am. Chem. Soc. 140 (2018) 1760-1766.
doi: 10.1021/jacs.7b10997
M.H. Guan, G.M. Ren, X.C. Zhang, et al., Int. J. Quantum Chem. (2020) e26568.
Z.Y. Zhao, W.W. Dai, Inorg. Chem. 53 (2014) 13001-13011.
doi: 10.1021/ic5021059
L.Q. Ye, Y.R. Su, X.L. Jin, H.Q. Xie, C. Zhang, Environ. Sci. Nano 1 (2014) 90-112.
doi: 10.1039/c3en00098b
S.J. Zhang, X.X. Chen, L.M. Song, J. Hazard. Mater. 367 (2019) 304-315.
doi: 10.1016/j.jhazmat.2018.12.060
J. Wu, X.D. Li, W. Shi, et al., Angew. Chem. In. Ed. 130 (2018) 8855-8859.
doi: 10.1002/ange.201803514
J. Li, H. Li, G.M. Zhan, L.Z. Zhang, Acc. Chem. Res. 50 (2017) 112-121.
doi: 10.1021/acs.accounts.6b00523
X.L. Xue, R.P. Chen, H.W. Chen, et al., Nano Lett. 18 (2018) 7372-7377.
doi: 10.1021/acs.nanolett.8b03655
T. Li, Y.W. Gao, L.Z. Zhang, et al., Appl. Catal. B: Environ. 277 (2020) 119065.
doi: 10.1016/j.apcatb.2020.119065
X. Zhang, Z.H. Ai, F.L. Jia, L.Z. Zhang, J. Phys. Chem. C 112 (2008) 747-753.
doi: 10.1021/jp077471t
W.D. Wang, F.Q. Huang, X.P. Lin, Jh. Yang, Catal. Commun. 9 (2008) 8-12.
doi: 10.1016/j.catcom.2007.05.014
H.F. Cheng, B.B. Huang, Y. Dai, Nanoscale 6 (2014) 2009-2026.
doi: 10.1039/c3nr05529a
J. Di, J.X. Xia, H.M. Li, S.J. Guo, S. Dai, Nano Energy 41 (2017) 172-192.
doi: 10.1016/j.nanoen.2017.09.008
X.L. Wu, C.Y. Toe, C.L. Su, et al., J. Mater. Chem. A 8 (2020) 15302-15318.
doi: 10.1039/D0TA01180K
L.P. Han, Y.X. Guo, Z. Lin, H.W. Huang, Colloids Surf. A 603 (2020) 125233.
doi: 10.1016/j.colsurfa.2020.125233
W.D. Shi, S.Y. Song, H.J. Zhang, Chem. Soc. Rev. 42 (2013) 5714-5743.
doi: 10.1039/c3cs60012b
P. Basnet, S. Chatterjee, Nano-Struct. Nano-Objects 22 (2020) 100426.
doi: 10.1016/j.nanoso.2020.100426
D. Wu, S.T. Yue, W. Wang, et al., Appl. Catal. B: Environ. 192 (2016) 35-45.
doi: 10.1016/j.apcatb.2016.03.046
Y.X. Guo, I. Siretanu, Y.H. Zhang, et al., J. Mater. Chem. A 6 (2018) 7500-7508.
doi: 10.1039/C8TA00781K
D. Wu, B. Wang, W. Wang, et al., J. Mater. Chem. A 3 (2015) 15148-15155.
doi: 10.1039/C5TA02757H
Z. Fan, Y.B. Zhao, W. Zhai, et al., RSC Adv. 6 (2016) 2028-2031.
doi: 10.1039/C5RA18768K
A.J. Han, H.W. Zhang, G.K. Chuah, S. Jaenicke, Appl. Catal. B: Environ. 219 (2017) 269-275.
doi: 10.1016/j.apcatb.2017.07.050
J.P. Lai, W.X. Niu, R. Luque, G.B. Xu, Nano Today 10 (2015) 240-267.
doi: 10.1016/j.nantod.2015.03.001
Y.N. Huo, J. Zhang, M. Miao, Y. Jin, Appl. Catal. B: Environ. 111-112 (2012) 334-341.
L.L. Chang, Y.P. Pu, G.D. Shen, et al., New J. Chem. 44 (2020) 2479-2488.
doi: 10.1039/C9NJ06060J
X.C. Lv, D.Y.S. Yan, F.L.Y. Lam, et al., Chem. Eng. J. 401 (2020) 126012.
doi: 10.1016/j.cej.2020.126012
Y.X. Yang, L. Geng, Y.H. Guo, Y.N. Guo, J. Chem, Technol. Biotechnol. 92 (2017) 1236-1247.
doi: 10.1002/jctb.5117
Y. Zhao, T. Yu, X. Tan, C. Xie, S.C. Wang, DaltonTrans. 44 (2015) 20475-20483.
doi: 10.1039/C5DT03315B
D. Zhang, J. Li, Q.G. Wang, Q.S. Wu, J. Mater. Chem. A 1 (2013) 8622-8629.
doi: 10.1039/c3ta11390f
L.L. Zhang, X.P. Yue, J.X. Liu, et al., Sep. Purif. Technol. 231 (2020) 115917.
doi: 10.1016/j.seppur.2019.115917
K. Li, H.B. Zhang, Y.P. Tang, et al., Appl. Catal. B: Environ. 164 (2015) 82-91.
doi: 10.1016/j.apcatb.2014.09.017
X.J. Yu, H.R. Qiu, B. Wang, et al., J. Alloys Compd. 839 (2020) 155597.
doi: 10.1016/j.jallcom.2020.155597
X.Y. Wu, K.K. Zhang, G.K. Zhan, S. Yin, Chem. Eng. J. 352 (2017) 59-70.
W.D. Zhang, Q. Zhang, F. Dong, Ind. Eng. Chem. Res. 52 (2013) 6740-6746.
doi: 10.1021/ie400615f
Z.H. Ai, W.K. Ho, S.C. Lee, L.Z. Zhang, Environ. Sci. Technol. 43 (2009) 4143-4150.
doi: 10.1021/es9004366
Y.T. Cai, J. Song, X.Y. Liu, et al., Environ. Sci. Nano 5 (2018) 2631-2640.
doi: 10.1039/C8EN00866C
G.F. Li, F. Qin, R.M. Wang, et al., J. Colloid Interf. Sci. 409 (2013) 43-51.
doi: 10.1016/j.jcis.2013.07.068
Y.C. Miao, Z.C. Lian, Y.N. Huo, H.X. Li, Chin. J. Catal. 39 (2018) 1411-1417.
doi: 10.1016/S1872-2067(18)63080-3
J. Li, L.J. Cai, J. Shang, Y. Yu, L.Z. Zhang, Adv. Mater. 28 (2016) 4059-4064.
doi: 10.1002/adma.201600301
Y.X. Zhao, S. Zhang, R. Shi, et al., Mater. Today 34 (2020) 78-91.
doi: 10.1016/j.mattod.2019.10.022
J. Di, J.X. Xia, M.X. Ji, et al., ACS Sustain. Chem. Eng. 4 (2016) 136-146.
doi: 10.1021/acssuschemeng.5b00862
Q. Jiang, M.X. Ji, R. Chen, et al., J. Colloid Interf. Sci. 574 (2020) 131-139.
doi: 10.1016/j.jcis.2020.04.018
Z.D. Wang, Z. Chu, C.W. Dong, et al., ACS Appl. Nano Mater. 3 (2020) 1981-1991.
doi: 10.1021/acsanm.0c00022
S. Patnaik, D.P. Sahoo, K. Parida, Carbon 172 (2021) 682-711.
doi: 10.1016/j.carbon.2020.10.073
J.J. Jiang, G. Ye, Z. Wang, et al., Angew. Chem. Int. Ed. 57 (2018) 12037-12042.
doi: 10.1002/anie.201807385
I. Shown, S. Samireddi, Y.C. Chang, et al., Nat. Commun. 9 (2018) 1-10.
doi: 10.1038/s41467-017-02088-w
D.X. Yang, J.L. Liang, L. Luo, et al., Chin. Chem. Lett. 32 (2021) 2534-2538.
doi: 10.1016/j.cclet.2020.12.049
L.H. Shao, Y.T. Liu, L.L. Wang, X.N. Xia, X.Y. Shen, Appl. Surf. Sci. 502 (2020) 143895.
doi: 10.1016/j.apsusc.2019.143895
W. Wang, R. Dai, L. Zhang, et al., J. Mater. Sci. 55 (2020) 11226-11240.
doi: 10.1007/s10853-020-04802-4
J.Q. Guo, X. Liao, M.H. Lee, et al., Appl. Catal. B: Environ. 243 (2019) 502-512.
doi: 10.1016/j.apcatb.2018.09.089
X.C. Jiao, K. Zheng, L. Liang, et al., Chem. Soc. Rev. 49 (2020) 6592-6604.
doi: 10.1039/D0CS00332H
K. Sharma, V. Dutta, S. Sharma, et al., J. Ind. Eng. Chem. 78 (2019) 1-20.
doi: 10.1016/j.jiec.2019.06.022
Y. Wang, Y. Long, Z.Q. Yang, D. Zhang, J. Hazard. Mater. 351 (2018) 11-19.
doi: 10.1016/j.jhazmat.2018.02.027
Z. Shi, Y. Zhang, X.F. Shen, et al., Chem. Eng. J. 386 (2020) 124010.
doi: 10.1016/j.cej.2020.124010
C.S. Guo, S.W. Gao, J.P. Lv, et al., Appl. Catal. B: Environ. 205 (2017) 68-77.
doi: 10.1016/j.apcatb.2016.12.032
Z.Q. Zhang, L.L. Bai, Z.J. Li, Y. Qu, L.Q. Jing, J. Mater. Chem. A 7 (2019) 10879-10897.
doi: 10.1039/C9TA02373A
H. Wang, Y. Qu, Z.K. Xu, et al., Sci. China Mater. 62 (2019) 653-661.
doi: 10.1007/s40843-018-9362-y
H.Z. Wu, C.W. Yuan, R.M. Chen, et al., ACS Appl. Mater. Interfaces 12 (2020) 43741-43749.
doi: 10.1021/acsami.0c12628
L.S. Jiang, Y. Xie, F. He, et al., Chin. Chem. Lett. 32 (2021) 2187-2191.
doi: 10.1016/j.cclet.2020.12.010
V. Dutta, S. Sharma, P. Raizada, et al., J. Environ. Chem. Eng. 8 (2020) 104505.
doi: 10.1016/j.jece.2020.104505
T. Jia, J. Wu, Y. Xiao, et al., J. Colloid Interf. Sci. 587 (2021) 402-416.
doi: 10.1016/j.jcis.2020.12.005
F.R. Guo, J.C. Chen, J.Z. Zhao, et al., Chem. Eng. J. 386 (2020) 124014.
doi: 10.1016/j.cej.2020.124014
J.C. Sin, S.M. Lam, H.H. Zeng, et al., Sep. Purif. Technol. 250 (2020) 117186.
doi: 10.1016/j.seppur.2020.117186
T. Jia, J. Wu, J. Song, et al., Chem. Eng. J. 396 (2020) 125258.
doi: 10.1016/j.cej.2020.125258
D. Majhi, K. Das, A. Mishra, R. Dhiman, B.G. Mishra, Appl. Catal. B: Environ. 260 (2020) 118222.
doi: 10.1016/j.apcatb.2019.118222
Y.Y. Wang, K. Wang, J.L. Wang, X.Y. Wu, G.K. Zhang, J. Mater. Sci. Technol. 56 (2020) 236-243.
doi: 10.1016/j.jmst.2020.03.039
X.B. Li, J. Xiong, X.M. Gao, et al., J. Hazard. Mater. 387 (2020) 121690.
X.X. Jia, Q.F. Han, H.Z. Liu, S.Z. Li, H.P. Bi, Chem. Eng. J. 399 (2020) 125701.
doi: 10.1016/j.cej.2020.125701
L.Q. Ye, Y. Deng, L. Wang, H.Q. Xie, F.Y. Su, ChemSusChem 12 (2019) 3671-3701.
doi: 10.1002/cssc.201901196
P.W. Zhou, L.P. Zhang, Y.M. Dai, et al., J. Clean. Prod. 246 (2020) 119007.
doi: 10.1016/j.jclepro.2019.119007
H.B. Yin, X.F. Chen, R.J. Hou, et al., ACS Appl. Mater. Interfaces 7 (2015) 20076-20082.
doi: 10.1021/acsami.5b05184
S.Y. Chen, R. Yan, X.L. Zhang, et al., Appl. Catal. B: Environ. 209 (2017) 320-328.
doi: 10.1016/j.apcatb.2017.03.003
X.H. Song, J.J. Wang, R.Q. Zhang, et al., J. Phys. Chem. C 123 (2019) 15599-15605.
doi: 10.1021/acs.jpcc.9b02784
J.Y. Zhu, Y.P. Li, X.J. Wang, et al., ACS Sustain. Chem. Eng. 7 (2019) 14953-14961.
doi: 10.1021/acssuschemeng.9b03196
F. Chen, T.Y. Ma, T.R. Zhang, Y.H. Zhang, H.W. Huang, Adv. Mater. 33 (2021) 2005256.
doi: 10.1002/adma.202005256
F. Chen, Z.Y. Ma, L.Q. Ye, et al., Adv. Mater. 32 (2020) 1908350.
doi: 10.1002/adma.201908350
J. Di, C. Chen, C. Zhu, et al., ACS Appl. Mater. Interfaces 11 (2019) 30786-30792.
doi: 10.1021/acsami.9b08109
X.L. Wu, Y.H. Ng, L. Wang, et al., J. Mater. Chem. A 5 (2017) 8117-8124.
doi: 10.1039/C6TA10964K
F. Yang, X.Y. Chu, J.H. Sun, et al., Chin. Chem. Lett. 31 (2020) 2784-2788.
doi: 10.1016/j.cclet.2020.07.033
M. Khan, C.S.L. Fung, A. Kumar, I.M.C. Lo, J. Hazard. Mater. 365 (2019) 733-743.
doi: 10.1016/j.jhazmat.2018.11.053
J. Di, J.X. Xia, M.X. Ji, et al., J. Mater. Chem. A 3 (2015) 15108-15118.
doi: 10.1039/C5TA02388B
G.H. Xu, M. Li, Y. Wang, et al., Sci. Total Environ. 678 (2019) 173-180.
doi: 10.1016/j.scitotenv.2019.04.418
L.X. Jia, W. Zhou, X. Huang, et al., Environ. Sci. Nano 6 (2019) 3601-3610.
doi: 10.1039/C9EN00717B
X. Shi, P.Q. Wang, W. Li, et al., Appl. Catal. B: Environ. 243 (2019) 322-329.
doi: 10.1016/j.apcatb.2018.10.037
X.R. Yang, Z. Chen, W. Zhao, et al., J. Alloys Compd. 864 (2021) 158784.
doi: 10.1016/j.jallcom.2021.158784
B.C. Hodges, E.L. Cates, J.H. Kim, Nat. Nanotechnol. 13 (2018) 642-650.
doi: 10.1038/s41565-018-0216-x
T. Kanagaraj, S. Thiripuranthagan, Appl. Catal. B: Environ. 207 (2017) 218-232.
doi: 10.1016/j.apcatb.2017.01.084
S.T. Guan, H. Yang, X.F. Sun, T. Xian, Opt. Mater. 100 (2020) 109644.
doi: 10.1016/j.optmat.2019.109644
P.J. Li, W. Cao, Y. Zhu, et al., Sci. Total Environ. 715 (2020) 136809.
doi: 10.1016/j.scitotenv.2020.136809
S. Li, Z.R. Wang, X.Y. Xie, et al., J. Hazard. Mater. 391 (2020) 121407.
doi: 10.1016/j.jhazmat.2019.121407
H. Li, F. Deng, Y. Zheng, et al., Environ. Sci. Nano 6 (2019) 3670-3683.
doi: 10.1039/C9EN00957D
S.B. Wang, X. Han, Y.H. Zhang, et al., Small Struct. 2 (2021) 2000061.
doi: 10.1002/sstr.202000061
J. Wu, Y. Xie, Y. Ling, et al., Chem. Eng. J. 400 (2020) 125944.
doi: 10.1016/j.cej.2020.125944
D.N. Liu, D.Y. Chen, N.J. Li, et al., Angew. Chem. 132 (2020) 4549-4554.
doi: 10.1002/ange.201914949
Q. Wang, Z.Q. Liu, D.M. Liu, et al., Chem. Eng. J. 360 (2019) 838-847.
doi: 10.1016/j.cej.2018.12.038
Y. Huang, J. Zhang, Z.Y. Wang, et al., Sol. RRL 4 (2020) 2000170.
doi: 10.1002/solr.202000170
X. Shi, P.Q. Wang, L. Wang, et al., ACS Sustain. Chem. Eng. 6 (2018) 13739-13746.
doi: 10.1021/acssuschemeng.8b01622
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Siyang Xue , Chen Cheng , Jieqiong Kang , Kaixuan Zheng , Adela Jing Li , Renli Yin . Oxygen vacancies-rich BiOBr bridged direct electron transfer with peroxymonosulfate for integrating superoxide radical and singlet oxygen on selective pollutants degradation. Chinese Chemical Letters, 2025, 36(10): 110776-. doi: 10.1016/j.cclet.2024.110776
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Jin ZHANG , Yuting WANG , Bin YU , Yuxin ZHONG , Yufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028
Xiaofan ZHANG , Yu DUAN , Meijie SHI , Nan LU , Renhong LI , Xiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
Min WANG , Dehua XIN , Wei ZHANG , Haiying YANG , Yuchun WANG , Zhaorong LIU , Meng SHI , Le SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109
Yunzhe Zheng , Si Sun , Jiali Liu , Qingyu Zhao , Heng Zhang , Jing Zhang , Peng Zhou , Zhaokun Xiong , Chuan-Shu He , Bo Lai . Application of machine learning for material prediction and design in the environmental remediation. Chinese Chemical Letters, 2025, 36(9): 110722-. doi: 10.1016/j.cclet.2024.110722
Xiao Liu , Hangqi Liu , Qian Wang , Dandan Zheng , Sibo Wang , Masakazu Anpo , Guigang Zhang . Rational synthesis of poly(heptazine imides) nanorod in ternary LiCl/NaCl/KCl for visible light hydrogen production. Chinese Chemical Letters, 2025, 36(12): 111621-. doi: 10.1016/j.cclet.2025.111621
Shuangyu Wu , Jian Peng , Yue Jiang , Sijie Lin . The overlooked promotional effects of alcohols to BiOBr catalysts in photocatalytic degradation of organic pollutants. Chinese Chemical Letters, 2025, 36(11): 110819-. doi: 10.1016/j.cclet.2025.110819
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026
Yanyan Zhao , Zhen Wu , Yong Zhang , Bicheng Zhu , Jianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142