Citation: Xiao Dan, Zhao Xin, Lei Jiang, Zhu Mengqian, Xu Liang. Synthesis of [6-6-6] ABE tricyclic ring analogues of methyllycaconitine[J]. Chinese Chemical Letters, ;2021, 32(10): 3031-3033. doi: 10.1016/j.cclet.2021.03.068 shu

Synthesis of [6-6-6] ABE tricyclic ring analogues of methyllycaconitine

    * Corresponding author at: Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
    E-mail address: liangxu@scu.edu.cn (L. Xu).
  • Received Date: 10 February 2021
    Revised Date: 23 March 2021
    Accepted Date: 25 March 2021
    Available Online: 27 March 2021

Figures(3)

  • A new synthesis of the bridged [6-6-6] ABE tricyclic ring analogues of methyllycaconitine with the C-1 oxygenated substituents has been developed using an efficient aza-annulation of β-enamino ketone followed by a facile decarboxylation to form BE rings. Subsequent elaboration to form the A ring was achieved by a transannular acyl radical cyclization with concomitant equipment of the key C-1 oxygen functionality.
  • 加载中
    1. [1]

      (a) F.P. Wang, Q.H. Chen, The C19-diterpenoid alkaloids, in: G.A. Cordell (Ed.), The Alkaloids: Chemistry and Biology, Academic Press Inc, San Diego, 2010, pp. 1-577.

    2. [2]

      R.H.F. Manske, Can. J. Res. 16B (1938) 57-63.  doi: 10.1139/cjr38b-007

    3. [3]

      S.W. Pelletier, N.V. Mody, K.I. Varughese, J.A. Maddry, H.K. Desai, J. Am. Chem. Soc. 103 (1981) 6536-6538.  doi: 10.1021/ja00411a062

    4. [4]

      (a) S.W. Pelletier, N.V. Mody, B.S. Joshi, L.C. Schramm, l3C and proton NMR shift assignments and physical constants of C19-diterpenoid alkaloids, in: S.W. Pelletier (Ed. ), Alkaloids: Chemical and Biological Perspectives, SpringerVerlag New York Inc., New York, 1984, pp. 205-213;
      (b) S.W. Pelletier, B.S. Joshi, Carbon-13 and proton NMR shift assignments and physical constants of norditerpenoid alkaloids, in: S.W. Pelletier (Ed. ), Alkaloids: Chemical and Biological Perspectives, Springer-Verlag New York Inc., New York, 1991, pp. 297-301.

    5. [5]

      S. Wonnacott, E.X. Albuquerque, D. Bertrand, Methods Neurosci. 12 (1993) 263-267.

    6. [6]

      (a) J. Malysz, J.H. Gronlien, D.J. Anderson, et al., J. Pharmacol. Exp. Ther. 330 (2009) 257-263;
      (b) S.N. Haydar, J. Dunlop, Curr. Top. Med. Chem. 10 (2010) 144-147.

    7. [7]

      (a) K.R. Jennings, D.G. Brown, D.P. Wright, Experientia 42 (1986) 611-613;
      (b) C.F. Kukel, K.R. Jennings, Can. J. Physiol. Pharmacol. 72 (1994) 104-107;
      (c) D.R.E. Macallan, G.G. Lunt, S. Wonnacott, et al., FEBS Lett. 226 (1988) 357-363;
      (d) M. Reina, A. Gonzalez-Coloma, Phytochem. Rev. 6 (2007) 81-95.

    8. [8]

      (a) K.J. Goodall, D. Barker, M.A. Brimble, Synlett (2005) 1809-1813;
      (b) J. Huang, C.M. Orac, S. McKay, D.B. McKay, S.C. Bergmeier, Bioorg. Med. Chem. 16 (2008) 3816-3820;
      (c) Y. Chan, J. Balle, S.J. Kevin, et al., Tetrahedron 66 (2010) 7179-7184;
      (d) H. Guthmann, D. Conole, E. Wright, et al., Eur. J. Org. Chem. (2009) 1944-1947;
      (e) J. Huang, S.C. Bergmeier, Tetrahedron 64 (2008) 6434-6437;
      (f) A. Lehmann, C. Brocke, D. Barker, M.A. Brimble, Eur. J. Org. Chem. (2006) 3205-3210;
      (g) E. Dickson, L.I. Pilkington, M.A. Brimble, Tetrahedron 72 (2016) 400-414;
      (h) K.J. Sparrow, S. Carley, T. Sohnel, D. Barker, M.A. Brimble, Tetrahderon 71 (2015) 2210-2221;
      (i) K.J. Goodall, M.A. Brimble, D. Barker, Tetrahedron 68 (2012) 5759-5778;
      (j) K.J. Sparrow, D. Barker, M.A. Brimble, Tetrahedron 68 (2012) 1017-1028;
      (k) K.J. Sparrow, D. Barker, M.A. Brimble, Tetrahedron 67 (2011) 7989-7999.

    9. [9]

      (a) Z.G. Liu, H. Cheng, M.J. Ge, L. Xu, F.P. Wang, Tetrahedron 69 (2013) 5431-5435;
      (b) H. Cheng, F.H. Zeng, D. Ma, et al., Org. Lett. 16 (2014) 2299-2301;
      (c) M.C. Liu, C.X. Cheng, W.Y. Xiong, et al., Org. Chem. Front. 5 (2018) 1502-1505.

    10. [10]

      A.R.L. Davies, D.J. Hardick, I.S. Blagbrough, et al., Biochem. Soc. Trans. 25 (1997) 545-548.  doi: 10.1042/bst025545s

    11. [11]

      A.K. George, D. Elena, Tetrahedron Lett. 39 (1998) 2451-2454.  doi: 10.1016/S0040-4039(98)00239-1

    12. [12]

      (a) I. Ninomiya, T. Naito, S. Higuchi, J. Chem. Soc. Chem. Comm. 24 (1970) 1662-1662;
      (b) R. Shabana, J.B. Rasmussen, S.O. Olesen, S.O. Lawesson, Tetrahedron 36 (1980) 3047-3051;
      (c) A.A. El-Barbary, S. Carlsson, S.O. Lawesson, Tetrahedron 38 (1982) 405-412;
      (d) L. Stanislaw, P. Beata, Syn. Commun. 32 (2002) 875-880;
      (e) W.F. Dai, C.H. Wang, X. Zhang, J.M. Zhang, M.D. Lang, Sci. China Chem. 51 (2008) 1044-1050.

    13. [13]

      (a) M. Shunichi, S. Shigehiro, S. Eiichiro, N. Takeshi, J. Org. Chem. 57 (1992) 2521-2523;
      (b) M. Shunichi, S. Shigehiro, S. Eiichiro, N. Takeshi, Tetrahedron 49 (1993) 8805-8826.

    14. [14]

      (a) K. Paulvannan, J.R. Stille, J. Org. Chem. 59 (1994) 1613-1620;
      (b) N.S. Barta, A. Brode, J.R. Stille, J. Am. Chem. Soc. 116 (1994) 6201-6206.

    15. [15]

      B.S. Bal, J.W.E. Childers, H.W. Pinnick, Tetrahedron 37 (1981) 2091-2096.  doi: 10.1016/S0040-4020(01)97963-3

    16. [16]

      S. Masamune, Y. Hayase, W. Schilling, W.K. Chan, G.S. Bates, J. Am. Chem. Soc. 99 (1977) 6756-6758.  doi: 10.1021/ja00462a049

    17. [17]

      (a) C. Chatgilialoglu, D. Crich, M. Komatsu, I. Ryu, Chem. Rev. 99 (1999) 1991-2070;
      (b) C.H. Schiesser, U. Wille, H. Matsubara, I. Ryu, Acc. Chem. Res. 40 (2007) 303-313;
      (c) K. Yoshikai, T. Hayama, K. Nishimura, K. Yamada, K. Tomioka, J. Org. Chem. 70 (2005) 681-683;
      (d) W.S. Grant, K. Zhu, S.L. Castle, Org. Lett. 8 (2006) 1867-1870;
      (e) M. Inoue, Y. Ishihara, S. Yamashita, M. Hirama, Org. Lett. 8 (2006) 5801-5804;
      (f) T. Roca, M.L. Bennasar, J. Org. Chem. 76 (2011) 4213-4218;
      (g) H. Zaimoku, T. Taniguchi, H. Ishibashi, Org. Lett. 14 (2012) 1656-1658.

    18. [18]

      I. Takashi, T. Tamaaki, C.C. Frederic, G. Junichi, N. Toshio, J. Lipid Res. 32 (1991) 649-658.  doi: 10.1016/S0022-2275(20)42052-8

    19. [19]

      L.C. Baillie, J.R. Bearder, W.S. Li, J.A. Sherringham, D.A. Whiting, J. Chem. Soc. Perkin Trans. 1 (1998) 4047-4050.

    20. [20]

      (a) R.C. Neil, H.D. Suzanne, G. Matthew, et al., Org. Process Res. Dev. 19 (2015) 865-871;
      (b) H. Gregory, K. Masanari, L.B. Stephen, J. Am. Chem. Soc. 125 (2003) 11253-11258.

  • 加载中
    1. [1]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    2. [2]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    3. [3]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    4. [4]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    5. [5]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    6. [6]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    7. [7]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    8. [8]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    9. [9]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    10. [10]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    11. [11]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    12. [12]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    13. [13]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    14. [14]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    15. [15]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    16. [16]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

    17. [17]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    18. [18]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    19. [19]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    20. [20]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

Metrics
  • PDF Downloads(4)
  • Abstract views(518)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return