Surface oxidized iron-nickel nanorods anchoring on graphene architectures for oxygen evolution reaction
-
* Corresponding author.
E-mail address: yxypz15@yzu.edu.cn (X. Yu).
Citation:
Xu Yu, Zhixin Zhao, Chengang Pei. Surface oxidized iron-nickel nanorods anchoring on graphene architectures for oxygen evolution reaction[J]. Chinese Chemical Letters,
;2021, 32(11): 3579-3583.
doi:
10.1016/j.cclet.2021.03.040
G. Zhang, G. Wang, H. Liu, J. Qu, J. Li, Nano Energy 43 (2018) 359-367.
doi: 10.1016/j.nanoen.2017.11.035
K.G. dos Santos, C.T. Eckert, E. De Rossi, et al., Renew. Sustain. Energy Rev. 68 (2017) 563-571.
doi: 10.1016/j.rser.2016.09.128
B. Lu, D. Cao, P. Wang, G. Wang, Y. Gao, Int. J. Hydrogen. Energy 36 (2011) 72-78.
doi: 10.1016/j.ijhydene.2010.09.056
V. Rashkova, S. Kitova, I. Konstantinov, T. Vitanov, Electrochim. Acta 47 (2002) 1555-1560.
doi: 10.1016/S0013-4686(01)00897-0
F. Song, L. Bai, A. Moysiadou, et al., J. Am. Chem. Soc. 140 (2018) 7748-7759.
doi: 10.1021/jacs.8b04546
H. Qiao, J. Yong, X. Dai, et al., J. Am. Chem. Soc. 5 (2017) 21320-21327.
doi: 10.1039/C7TA06387C
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334 (2011) 1383-1385.
doi: 10.1126/science.1212858
A. Grimaud, O. Diaz-Morales, B. Han, et al., Nat. Chem. 9 (2017) 457-465.
doi: 10.1038/nchem.2695
J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 10 (2015) 444-452.
doi: 10.1038/nnano.2015.48
T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2 (2012) 1765-1772.
doi: 10.1021/cs3003098
S. Park, Y. Shao, J. Liu, Y. Wang, Energy Environ. Sci. 5 (2012) 9331-9344.
doi: 10.1039/c2ee22554a
Y. Zheng, Y. Jiao, Y. Zhu, et al., J. Am. Chem. Soc. 138 (2016) 16174-16181.
doi: 10.1021/jacs.6b11291
H. Sun, Z. Yan, F. Liu, et al., Adv. Mater. 32 (2020) 1806326.
doi: 10.1002/adma.201806326
U.Y. Qazi, C.Z. Yuan, N. Ullah, et al., ACS Appl. Mater. Interface 9 (2017) 28627-28634.
doi: 10.1021/acsami.7b08922
N.T. Suen, S.F. Hung, Q. Quan, et al., Chem. Soc. Rev. 46 (2017) 337-365.
doi: 10.1039/C6CS00328A
Y. Liu, H. Wang, D. Lin, et al., Energy Environ. Sci. 8 (2015) 1719-1724.
doi: 10.1039/C5EE01290B
Z. Liu, X. Yu, H. Yu, H. Xue, L. Feng, ChemSusChem 11 (2018) 2703-2709.
doi: 10.1002/cssc.201801250
M.E.G. Lyons, M.P. Brandon, J. Electroanal. Chem. 641 (2010) 119-130.
doi: 10.1016/j.jelechem.2009.11.024
P. Rüetschi, P. Delahay, J. Chem. Phys. 23 (1955) 556-560.
doi: 10.1063/1.1742029
M.S. Burke, L.J. Enman, A.S. Batchellor, S. Zou, S.W. Boettcher, Chem. Mater. 27 (2015) 7549-7558.
doi: 10.1021/acs.chemmater.5b03148
J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, J. Electroanal. Chem. 607 (2007) 83-89.
doi: 10.1016/j.jelechem.2006.11.008
Y. Li, H. He, W. Fu, et al., Chem. Commun. 52 (2016) 1439-1442.
doi: 10.1039/C5CC08150E
M.W. Louie, A.T. Bell, J. Am. Chem. Soc. 135 (2013) 12329-12337.
doi: 10.1021/ja405351s
L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 136 (2014) 6744-6753.
doi: 10.1021/ja502379c
M. Gong, Y. Li, H. Wang, et al., J. Am. Chem. Soc. 135 (2013) 8452-8455.
doi: 10.1021/ja4027715
S. Yin, W. Tu, Y. Sheng, et al., Adv. Mater. 30 (2018) 1705106.
doi: 10.1002/adma.201705106
H. Li, S. Liang, J. Li, L. He, J. Mater. Chem. A 1 (2013) 6335-6341.
doi: 10.1039/c3ta10681k
G. Wang, J. Yang, J. Park, et al., J. Phys. Chem. C 112 (2008) 8192-8195.
doi: 10.1021/jp710931h
S. Fang, D. Huang, R. Lv, et al., RSC Adv. 7 (2017) 25773-25779.
doi: 10.1039/C7RA03215C
K. Krishnamoorthy, M. Veerapandian, R. Mohan, S.J. Kim, Appl. Phys. A 106 (2012) 501-506.
doi: 10.1007/s00339-011-6720-6
P. Nakhanivej, X. Yu, S. Park, et al., Nat. Mater. 18 (2019) 156-162.
doi: 10.1038/s41563-018-0230-2
C. Wang, H. Yang, Y. Zhang, Q. Wang, Angew. Chem. Int. Ed. 58 (2019) 6099-6103.
doi: 10.1002/anie.201902446
T. Ma, M. Yuan, S.M. Islam, et al., J. Alloys. Compd. 678 (2016) 468-477.
doi: 10.1016/j.jallcom.2016.03.243
Z. Wang, J. Li, X. Tian, et al., ACS Appl. Mater. Inter. 8 (2016) 19386-19392.
doi: 10.1021/acsami.6b03392
H. Shin, H. Xiao, W.A. Goddard, J. Am. Chem. Soc. 140 (2018) 6745-6748.
doi: 10.1021/jacs.8b02225
J.T. Ren, G.G. Yuan, C.C. Weng, L. Chen, Z.Y. Yuan, Nanoscale 10 (2018) 10620-10628.
doi: 10.1039/C8NR01655K
Y. Xue, Y. Wang, H. Liu, et al., Chem. Commun. 54 (2018) 6204-6207.
doi: 10.1039/C8CC03223H
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2024.100210
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510