Citation: Tao Zhong, Zhida Chen, Jitao Yi, Gui Lu, Jiang Weng. Recent progress in the synthesis of sulfonyl fluorides for SuFEx click chemistry[J]. Chinese Chemical Letters, ;2021, 32(9): 2736-2750. doi: 10.1016/j.cclet.2021.03.035 shu

Recent progress in the synthesis of sulfonyl fluorides for SuFEx click chemistry

    * Corresponding authors.
    E-mail addresses: lugui@mail.sysu.edu.cn (G. Lu), wengj2@mail.sysu.edu.cn (J. Weng).
  • Received Date: 31 January 2021
    Revised Date: 11 March 2021
    Accepted Date: 12 March 2021
    Available Online: 15 March 2021

Figures(47)

  • Since the sulfur(VI) fluoride exchange reaction (SuFEx) was introduced by Sharpless and co-workers in 2014, this new-generation click chemistry has emerged as an efficient and reliable tool for creating modular intermolecular connections. Sulfonyl fluorides, one of the most important sulfur(VI) fluoride species, have attracted enormous attention in diverse fields, ranging from organic synthesis and material science, to chemical biology and drug discovery. This review aims to introduce seminal and recent progresses on the synthetic methods of sulfonyl fluorides, which include aromatic, aliphatic, alkenyl, and alkynyl sulfonyl fluorides. While not meant to be exhaustive, the purpose is to give a timely overview and insight in this field, and stimulate the development of more efficient synthetic methods of sulfonyl fluorides.
  • 加载中
    1. [1]

      (a) A.S. Barrow, C.J. Smedley, Q. Zheng, et al., Chem. Soc. Rev. 48 (2019) 4731-4758;
      (b) P.K. Chinthakindi, P.I. Arvidsson, Eur. J. Org. Chem. 2018 (2018) 3648-3666;
      (c) T. Abdul Fattah, A. Saeed, F. Albericio, J. Fluorine Chem. 213 (2018) 87-112.

    2. [2]

      W. Steinkopf, J. Prakt. Chem. 117 (1927) 1-82.  doi: 10.1002/prac.19271170101

    3. [3]

      J. Dong, L. Krasnova, M.G. Finn, K.B. Sharpless, Angew. Chem. Int. Ed. 53 (2014) 9430-9448.  doi: 10.1002/anie.201309399

    4. [4]

      (a) P. Mukherjee, C.P. Woroch, L. Cleary, et al., Org. Lett. 20 (2018) 3943-3947;
      (b) H. Mukherjee, J. Debreczeni, J. Breed, et al., Org. Biomol. Chem. 15 (2017) 9685-9695;
      (c) S. Berg, M. Bergh, S. Hellberg, et al., J. Med. Chem. 55 (2012) 9107-9119.

    5. [5]

      (a) M.K. Nielsen, C.R. Ugaz, W. Li, A.G. Doyle, J. Am. Chem. Soc. 137 (2015) 9571-9574;
      (b) J. Yin, D.S. Zarkowsky, D.W. Thomas, M.M. Zhao, M.A. Huffman, Org. Lett. 6 (2004) 1465-1468;
      (c) M.K. Nielsen, D.T. Ahneman, O. Riera, A.G. Doyle, J. Am. Chem. Soc. 140 (2018) 5004-5008.

    6. [6]

      (a) J.A.H. Inkster, K. Liu, S. Ait-Mohand, et al., Chem. Eur. J. 18 (2012) 11079-11087;
      (b) L. Matesic, N.A. Wyatt, B.H. Fraser, et al., J. Org. Chem. 78 (2013) 11262-11270.

    7. [7]

      G. Meng, T. Guo, T. Ma, et al., Nature 574 (2019) 86-89.  doi: 10.1038/s41586-019-1589-1

    8. [8]

      (a) J. Dong, K.B. Sharpless, L. Kwisnek, J.S. Oakdale, V.V. Fokin, Angew. Chem. Int. Ed. 53 (2014) 9466-9470;
      (b) H. Wang, F. Zhou, G. Ren, et al., Angew. Chem. Int. Ed. 56 (2017) 11203-11208;
      (c) B. Gao, L. Zhang, Q. Zheng, et al., Nat. Chem. 9 (2017) 1083-1088;
      (d) C. Yang, J.P. Flynn, J. Niu, Angew. Chem. Int. Ed. 57 (2018) 16194-16199.

    9. [9]

      (a) A. Narayanan, L.H. Jones, Chem. Sci. 6 (2015) 2650-2659;
      (b) E.C. Hett, H. Xu, K.F. Geoghegan, et al., ACS Chem. Biol. 10 (2015) 1094-1098;
      (c) O. Fadeyi, M.D. Parikh, M.Z. Chen, et al., ChemBioChem 17 (2016) 1925-1930;
      (d) L.H. Jones, ACS Med. Chem. Lett. 9 (2018) 584-586;
      (e) A.J. Brouwer, A. Jonker, P. Werkhoven, et al., J. Med. Chem. 55 (2012) 10995-11003;
      (f) C. Dubiella, H. Cui, M. Gersch, et al., Angew. Chem. Int. Ed. 53 (2014) 11969-11973;
      (g) N. Herrero Alvarez, H. van de Langemheen, A.J. Brouwer, R.M.J. Liskamp, Biorg. Med. Chem. 25 (2017) 5055-5063.

    10. [10]

      (a) W. Davies, J.H. Dick, J. Chem. Soc. (1931) 2104-2109;
      (b) W. Davies, J.H. Dick, J. Chem. Soc. (1932) 483-486.

    11. [11]

      T.A. Bianchi, L.A. Cate, J. Org. Chem. 42 (1977) 2031-2032.  doi: 10.1021/jo00431a054

    12. [12]

      (a) G.J. Shafer, F. Forohar, D.D. DesMarteau, J. Fluorine Chem. 101 (2000) 27-29;
      (b) D.W. Kim, H.J. Jeong, S.T. Lim, et al., J. Org. Chem. 73 (2008) 957-962.

    13. [13]

      (a) S.W. Wright, K.N. Hallstrom, J. Org. Chem. 71 (2006) 1080-1084;
      (b) G. Laudadio, A.A. Bartolomeu, L. Verwijlen, et al., J. Am. Chem. Soc. 141 (2019) 11832-11836;
      (c) Y. Cao, B. Adriaenssens, Ade A. Bartolomeu, et al., J. Flow Chem. 10 (2020) 191-197.

    14. [14]

      (a) M. Kirihara, S. Naito, Y. Ishizuka, H. Hanai, T. Noguchi, Tetrahedron Lett. 52 (2011) 3086-3089;
      (b) M. Kirihara, S. Naito, Y. Nishimura, et al., Tetrahedron 70 (2014) 2464-2471.

    15. [15]

      (a) M. Kulka, J. Am. Chem. Soc. 72 (1950) 1215-1218;
      (b) J.G. Kim, D.O. Jang, Synlett 2010 (2010) 3049-3052;
      (c) Y. Jiang, N.S. Alharbi, B. Sun, H.L. Qin, RSC Adv. 9 (2019) 13863-13867.

    16. [16]

      (a) A.J. Brouwer, T. Ceylan, Tvd. Linden, R.M.J. Liskamp, Tetrahedron Lett. 50 (2009) 3391-3393;
      (b) A.J. Brouwer, T. Ceylan, A.M. Jonker, T. van der Linden, R.M. Liskamp, Bioorg. Med. Chem. 19 (2011) 2397-2406.

    17. [17]

      (a) F. Toulgoat, B.R. Langlois, M. Médebielle, J.Y. Sanchez, J. Org. Chem. 72 (2007) 9046-9052;
      (b) L. Tang, Y. Yang, L. Wen, X. Yang, Z. Wang, Green Chem. 18 (2016) 1224-1228.

    18. [18]

      M. Pérez-Palau, J. Cornella, Eur. J. Org. Chem. 2020 (2020) 2497-2500.  doi: 10.1002/ejoc.202000022

    19. [19]

      A. Gomez-Palomino, J. Cornella, Angew. Chem. Int. Ed. 58 (2019) 18235-18239.  doi: 10.1002/anie.201910895

    20. [20]

      A.T. Davies, J.M. Curto, S.W. Bagley, M.C. Willis, Chem. Sci. 8 (2017) 1233-1237.  doi: 10.1039/C6SC03924C

    21. [21]

      A.L. Tribby, I. Rodriguez, S. Shariffudin, N.D. Ball, J. Org. Chem. 82 (2017) 2294-2299.  doi: 10.1021/acs.joc.7b00051

    22. [22]

      J. Kwon, B.M. Kim, Org. Lett. 21 (2019) 428-433.  doi: 10.1021/acs.orglett.8b03610

    23. [23]

      C. Lee, N.D. Ball, G.M. Sammis, Chem. Commun. 55 (2019) 14753-14756.  doi: 10.1039/C9CC08487H

    24. [24]

      Y. Liu, D. Yu, Y. Guo, et al., Org. Lett. 22 (2020) 2281-2286.  doi: 10.1021/acs.orglett.0c00484

    25. [25]

      T. Zhong, M.K. Pang, Z.D. Chen, et al., Org. Lett. 22 (2020) 3072-3078.  doi: 10.1021/acs.orglett.0c00823

    26. [26]

      (a) Q. Lin, Z. Ma, C. Zheng, et al., Chin. J. Chem. 38 (2020) 1107-1110;
      (b) S. Liu, Y. Huang, X.H. Xu, F.L. Qing, J. Fluorine Chem. 240 (2020) 109653.

    27. [27]

      (a) R.M. Hedrick, US Patent 2653973, 1953.
      (b) J.J. Krutak, R.D. Burpitt, W.H. Moore, J.A. Hyatt, J. Org. Chem. 44 (1979) 3847-3858.

    28. [28]

      Y.P. Meng, S.M. Wang, W.Y. Fang, et al., Synthesis 52 (2019) 673-687.

    29. [29]

      Q. Chen, P. Mayer, H. Mayr, Angew. Chem. Int. Ed. 55 (2016) 12664-12667.  doi: 10.1002/anie.201601875

    30. [30]

      Q. Zheng, J. Dong, K.B. Sharpless, J. Org. Chem. 81 (2016) 11360-11362.  doi: 10.1021/acs.joc.6b01423

    31. [31]

      H.L. Qin, Q. Zheng, G.A. Bare, P. Wu, K.B. Sharpless, Angew. Chem. Int. Ed. 55 (2016) 14155-14158.  doi: 10.1002/anie.201608807

    32. [32]

      P.K. Chinthakindi, K.B. Govender, A.S. Kumar, et al., Org. Lett. 19 (2017) 480-483.  doi: 10.1021/acs.orglett.6b03634

    33. [33]

      G.F. Zha, G.A.L. Bare, J. Leng, et al., Adv. Synth. Catal. 359 (2017) 3237-3242.  doi: 10.1002/adsc.201700688

    34. [34]

      G.F. Zha, Q. Zheng, J. Leng, et al., Angew. Chem. Int. Ed. 56 (2017) 4849-4852.  doi: 10.1002/anie.201701162

    35. [35]

      S.M. Wang, C. Li, J. Leng, S.N.A. Bukhari, H.L. Qin, Org. Chem. Front. 5 (2018) 1411-1415.  doi: 10.1039/C7QO01128H

    36. [36]

      (a) S.M. Wang, B. Moku, J. Leng, H.L. Qin, Eur. J. Org. Chem. 2018 (2018) 4407-4410;
      (b) C. Li, S.M. Wang, H.L. Qin, Org. Lett. 20 (2018) 4699-4703.

    37. [37]

      G. Ncube, M.P. Huestis, Organometallics 38 (2019) 76-80.  doi: 10.1021/acs.organomet.8b00327

    38. [38]

      X.Y. Chen, Y. Wu, J. Zhou, P. Wang, J.Q. Yu, Org. Lett. 21 (2019) 1426-1429.  doi: 10.1021/acs.orglett.9b00165

    39. [39]

      (a) P.K. Mykhailiuk, Chem. Eur. J. 20 (2014) 4942-4947;
      (b) E.Y. Slobodyanyuk, O.S. Artamonov, O.V. Shishkin, P.K. Mykhailiuk, Eur. J. Org. Chem. 2014 (2014) 2487-2495.

    40. [40]

      H. Jangra, Q. Chen, E. Fuks, et al., J. Am. Chem. Soc. 140 (2018) 16758-16772.  doi: 10.1021/jacs.8b09995

    41. [41]

      J. Leng, H.L. Qin, Chem. Commun. 54 (2018) 4477-4480.  doi: 10.1039/C8CC00986D

    42. [42]

      (a) C.J. Smedley, M.C. Giel, A. Molino, et al., Chem. Commun. 54 (2018) 6020-6023;
      (b) J. Thomas, V.V. Fokin, Org. Lett. 20 (2018) 3749-3752.

    43. [43]

      J. Leng, N.S. Alharbi, H.L. Qin, Eur. J. Org. Chem. 2019 (2019) 6101-6105.  doi: 10.1002/ejoc.201901106

    44. [44]

      J. Leng, W. Tang, W.Y. Fang, C. Zhao, H.L. Qin, Org. Lett. 22 (2020) 4316-4321.  doi: 10.1021/acs.orglett.0c01360

    45. [45]

      T.S.B. Lou, S.W. Bagley, M.C. Willis, Angew. Chem. Int. Ed. 58 (2019) 18859-18863.  doi: 10.1002/anie.201910871

    46. [46]

      X. Nie, T. Xu, J. Song, et al., Angew. Chem. Int. Ed. 60 (2020) 3956-3960.

    47. [47]

      A. Shavnya, S.B. Coffey, K.D. Hesp, S.C. Ross, A.S. Tsai, Org. Lett. 18 (2016) 5848-5851.  doi: 10.1021/acs.orglett.6b02894

    48. [48]

      A. Shavnya, K.D. Hesp, A.S. Tsai, Adv. Synth. Catal. 360 (2018) 1768-1774.  doi: 10.1002/adsc.201800071

    49. [49]

      X.R. Li, H.J. Chen, W. Wang, et al., J. Organomet. Chem. 899 (2019) 120912.  doi: 10.1016/j.jorganchem.2019.120912

    50. [50]

      B. Moku, W.Y. Fang, J. Leng, E.A.B. Kantchev, H.L. Qin, ACS Catal. 9 (2019) 10477-10488.  doi: 10.1021/acscatal.9b03640

    51. [51]

      B. Moku, W.Y. Fang, J. Leng, et al., iScience 21 (2019) 695-705.  doi: 10.1016/j.isci.2019.10.051

    52. [52]

      J. Chen, B.Q. Huang, Z.Q. Wang, X.J. Zhang, M. Yan, Org. Lett. 21 (2019) 9742-9746.  doi: 10.1021/acs.orglett.9b03911

    53. [53]

      J. Chen, D.Y. Zhu, X.Q. Zhang, M. Yan, J. Org. Chem. 86 (2021) 3041-3048.  doi: 10.1021/acs.joc.0c02511

    54. [54]

      H.R. Chen, Z.Y. Hu, H.L. Qin, H. Tang, Org. Chem. Front. 8 (2021) 1185-1189.  doi: 10.1039/D0QO01430C

    55. [55]

      H.U. Daeniker, J. Druey, Helv. Chim. Acta 45 (1962) 1972-1981.  doi: 10.1002/hlca.19620450633

    56. [56]

      J. Chanet-Ray, R. Vessiere, A. Zeroual, Heterocycles 26 (1987) 101-108.  doi: 10.3987/R-1987-01-0101

    57. [57]

      Y.A. Skalenko, T.V. Druzhenko, A.V. Denisenko, et al., J. Org. Chem. 83 (2018) 6275-6289.  doi: 10.1021/acs.joc.8b00077

    58. [58]

      V.L. Mykhalchuk, V.S. Yarmolchuk, R.O. Doroschuk, A.A. Tolmachev, O.O. Grygorenko, Eur. J. Org. Chem. 2018 (2018) 2870-2876.  doi: 10.1002/ejoc.201800521

    59. [59]

      J. Liu, S.M. Wang, H.L. Qin, Org. Biomol. Chem. 18 (2020) 4019-4023.  doi: 10.1039/D0OB00814A

    60. [60]

      R. Xu, T. Xu, M. Yang, T. Cao, S. Liao, Nat. Commun. 10 (2019) 3752.  doi: 10.1038/s41467-019-11805-6

    61. [61]

      X. Zhang, W.Y. Fang, R. Lekkala, W. Tang, H.L. Qin, Adv. Synth. Catal. 362 (2020) 3358-3363.  doi: 10.1002/adsc.202000515

    62. [62]

      Y. Liu, H. Wu, Y. Guo, et al., Angew. Chem. Int. Ed. 56 (2017) 15432-15435.  doi: 10.1002/anie.201709663

    63. [63]

      Q. Lin, Y. Liu, Z. Xiao, et al., Org. Chem. Front. 6 (2019) 447-450.  doi: 10.1039/C8QO01192C

    64. [64]

      Y. Liu, Q. Lin, Z. Xiao, et al., Chem. Eur. J. 25 (2019) 1824-1828.  doi: 10.1002/chem.201805526

    65. [65]

      C.J. Smedley, G. Li, A.S. Barrow, et al., Angew. Chem. Int. Ed. 59 (2020) 12460-12469.  doi: 10.1002/anie.202003219

    66. [66]

      (a) X. Zhang, B. Moku, J. Leng, K.P. Rakesh, H.L. Qin, Eur. J. Org. Chem. 2019 (2019) 1763-1769;
      (b) W.Y. Fang, S.M. Wang, Z.W. Zhang, H.L. Qin, Org. Lett. 22 (2020) 8904-8909;
      (c) Z.W. Zhang, S.M. Wang, W.Y. Fang, R. Lekkala, H.L. Qin, J. Org. Chem. 85 (2020) 13721-13734.

  • 加载中
    1. [1]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    2. [2]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    3. [3]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    4. [4]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    5. [5]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    6. [6]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    7. [7]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    8. [8]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    9. [9]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    10. [10]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    11. [11]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    12. [12]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    13. [13]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    16. [16]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    17. [17]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    18. [18]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    19. [19]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    20. [20]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

Metrics
  • PDF Downloads(63)
  • Abstract views(1163)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return