Citation: Haijun Leng, Zhao Qian, Qing Mao, Shuaijiang Liu, Menglan Luo, Rui Qin, Wei Huang, Gu Zhan. NHC-catalysed retro-aldol/aldol cascade reaction enabling solvent-controlled stereodivergent synthesis of spirooxindoles[J]. Chinese Chemical Letters, ;2021, 32(8): 2567-2571. doi: 10.1016/j.cclet.2021.03.009 shu

NHC-catalysed retro-aldol/aldol cascade reaction enabling solvent-controlled stereodivergent synthesis of spirooxindoles

    *Corresponding authors.
    E-mail addresses: huangwei@cdutcm.edu.cn (W. Huang), zhangu@cdutcm.edu.cn (G. Zhan).
    1These authors contributed equally to this work.
  • Received Date: 25 December 2020
    Revised Date: 2 March 2021
    Accepted Date: 3 March 2021
    Available Online: 5 March 2021

Figures(5)

  • An N-heterocyclic carbene (NHC)-catalysed retro-aldol/aldol cascade reaction of spirooxindole-based β-hydroxyaldehyde has been developed. The ring opening-closure process enables the diastereodivergent synthesis of spirocyclopentaneoxindole products with four consecutive stereocenters by simply changing the reaction solvents (THF or DCE). The Michael/aldol/retro-aldol/aldol sequential protocol allows the diastereodivergent synthesis of spirocyclopentaneoxindoles from 3-substituted oxindole and α, β-unsaturated aldehyde under the relay catalysis of a chiral secondary amine and an NHC catalyst. Moreover, four stereoisomers of the product can be selectively provided by using different combinations of a chiral secondary amine and a solvent.
  • 加载中
    1. [1]

      (a) G. Zhan, W. Du, Y.C. Chen, Chem. Soc. Rev. 46 (2017) 1675-1692;
      (b) M. Bihani, J.C.G. Zhao, Adv. Synth. Catal. 359 (2017) 534-575;
      (c) L. Lin, X. Feng, Chem. Eur. J. 23 (2017) 6464-6482;
      (d) S. Krautwald, E.M. Carreira, J. Am. Chem. Soc. 139 (2017) 5627-5639;
      (e) I.P. Beletskaya, C. Nájera, M. Yus, Chem. Rev. 118 (2018) 5080-5200;
      (f) J. Adrio, J.C. Carretero, Chem. Commun. 55 (2019) 11979-11991;
      (g) S.L. Rössler, D.A. Petrone, E.M. Carreira, Acc. Chem. Res. 52 (2019) 2657-2672;
      (h) C.Nájera, F. Foubelo, J.M. Sansano, M.Yus, Org. Biomol. Chem.18 (2020) 1232-1278;
      (i) L.C. Miller, R. Sarpong, Chem. Soc. Rev. 40 (2011) 4550-4562.

    2. [2]

      (a) J. Mahatthananchai, A.M. Dumas, J.W. Bode, Angew. Chem. Int. Ed. 51 (2012) 10954-10990;
      (b) M.T. Oliveira, M. Luparia, D. Audisio, N. Maulide, Angew. Chem. Int. Ed. 52 (2013) 13149-13152.

    3. [3]

      (a) X. Li, W. Huang, Y.Q. Liu, et al., J. Org. Chem. 82 (2017) 397-406;
      (b) S.B.J. Kan, H. Maruyama, M. Akakura, T. Kano, K. Maruoka, Angew. Chem. Int. Ed. 56 (2017) 9487-9491;
      (c) C. Verrier, P. Melchiorre, Chem. Sci. 6 (2015) 4242-4246;
      (d) X. Feng, Z. Zhou, R. Zhou, et al., J. Am. Chem. Soc. 134 (2012) 19942-19947;
      (e) L. Zhang, H. Yuan, W. Lin, et al., Org. Lett. 20 (2018) 4970-4974;
      (f) W. Xiao, Q.Q. Yang, Z. Chen, et al., Org. Lett. 20 (2018) 236-239;
      (g) H. Huang, S. Konda, J.C.G. Zhao, Angew. Chem. Int. Ed. 55 (2016) 2213-2216;
      (h) X. Li, M. Lu, Y. Dong, et al., Nat. Commun. 5 (2014) 4479;
      (i) S. Meninno, A. Roselli, A. Capobianco, J. Overgaard, A. Lattanzi, Org. Lett. 19 (2017) 5030-5033;
      (j) D. Uraguchi, K. Yoshioka, T. Ooi, Nat. Commun. 8 (2017) 14793.

    4. [4]

      (a) X. Cong, G. Zhan, Z. Mo, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 142 (2020) 5531-5537;
      (b) H.L. Teng, Y. Luo, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 139 (2017) 16506-16509;
      (c) Y. Kuang, B. Shen, L. Dai, et al., Chem. Sci. 9 (2018) 688-692;
      (d) G. Lu, T. Yoshino, H. Morimoto, et al., Angew. Chem. Int. Ed. 50 (2011) 4382-4385.

    5. [5]

      (a) X.X. Yan, Q. Peng, Q. Li, et al., J. Am. Chem. Soc. 130 (2008) 14362-14363;
      (b) M. Luparia, M.T. Oliveira, D. Audisio, et al., Angew. Chem. Int. Ed. 50 (2011) 12631-12635;
      (c) D. Audisio, M. Luparia, M.T. Oliveira, D. Klütt, N. Maulide, Angew. Chem. Int. Ed. 51 (2012) 7314-7317;
      (d) E.E. Maroto, S. Filippone, M. Suárez, et al., J. Am. Chem. Soc. 136 (2014) 705-712;
      (e) X. Hao, L. Lin, F. Tan, et al., ACS Catal. 5 (2015) 6052-6056;
      (f) M. Mechler, R. Peters, Angew. Chem. Int. Ed. 54 (2015) 10303-10307;
      (g) K. Weidner, Z. Sun, N. Kumagai, M. Shibasaki, Angew. Chem. Int. Ed. 54 (2015) 6236-6240;
      (h) C.Y. Li, W.L. Yang, X. Luo, W.P. Deng, Chem. Eur. J. 21 (2015) 19048-19057;
      (i) T.T. Gao, W.W. Zhang, X. Sun, H.X. Lu, B.J. Li, J. Am. Chem. Soc. 141 (2019) 4670-4677;
      (j) M.M. Zhang, Y.N. Wang, B.C. Wang, et al., Nat. Commun. 10 (2019) 2716;
      (k) X.J. Liu, S. Jin, W.Y. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 2039-2043.

    6. [6]

      (a) J. Gao, S. Bai, Q. Gao, Y. Liu, Q. Yang, Chem. Commun. 47 (2011) 6716-6718;
      (b) Á. Martínez-Castañeda, H. Rodríguez-Solla, C. Concellón, V. del Amo, J. Org. Chem. 77 (2012) 10375-10381.

    7. [7]

      (a) C.S. Schindler, E.N. Jacobsen, Science 340 (2013) 1052-1053;
      (b) B. Han, X. Xie, W. Huang, et al., Adv. Synth. Catal. 356 (2014) 3676-3682;
      (c) N.K. Rana, H. Huang, J.C.G. Zhao, Angew. Chem. Int. Ed. 53 (2014) 7619-7623;
      (d) L. Næsborg, K.S. Halskov, F. Tur, S.M.N. Mønsted, K.A. Jørgensen, Angew. Chem. Int. Ed. 54 (2015) 10193-10197;
      (e) T. Sandmeier, S. Krautwald, H.F. Zipfel, E.M. Carreira, Angew. Chem. Int. Ed. 54 (2015) 14363-14367;
      (f) P. Chen, Y. Li, Z.C. Chen, W. Du, Y.C. Chen, Angew. Chem. Int. Ed. 59 (2020) 7083-7088;
      (g) X. Huo, R. He, X. Zhang, W. Zhang, J. Am. Chem. Soc. 138 (2016) 11093-11096;
      (h) Z.T. He, X. Jiang, J.F. Hartwig, J. Am. Chem. Soc. 141 (2019) 13066-13073;
      (i) R. He, X. Huo, L. Zhao, et al., J. Am. Chem. Soc. 142 (2020) 8097-8103;
      (j) L. Wei, Q. Zhu, S.M. Xu, X. Chang, C.J. Wang, J. Am. Chem. Soc. 140 (2018) 1508-1513;
      (k) S. Krautwald, M.A. Schafroth, D. Sarlah, E.M. Carreira, J. Am. Chem. Soc. 136 (2014) 3020-3023;
      (l) S. Krautwald, D. Sarlah, M.A. Schafroth, E.M. Carreira, Science 340 (2013) 1065-1068.

    8. [8]

      (a) M. Morgen, S. Bretzke, P. Li, D. Menche, Org. Lett. 12 (2010) 4494-4497;
      (b) A. Katsuyama, A. Matsuda, S. Ichikawa, Org. Lett. 18 (2016) 2552-2555;
      (c) X. Tian, C. Cassani, Y. Liu, et al., J. Am. Chem. Soc. 133 (2011) 17934-17941;
      (d) A. Katsuyama, A. Paudel, S. Panthee, et al., Org. Lett. 19 (2017) 3771-3774;
      (e) A. Katsuyama, F. Yakushiji, S. Ichikawa, J. Org. Chem. 83 (2018) 7085-7101;
      (f) P.V. Ramachandran, P.B. Chanda, Org. Lett. 14 (2012) 4346-4349.

    9. [9]

      (a) Z.Y. Cao, J. Zhou, Org. Chem. Front. 2 (2015) 849-858;
      (b) Y. Wang, H. Lu, P.F. Xu, Acc. Chem. Res. 48 (2015) 1832-1844;
      (c) Z.Y. Cao, F. Zhou, J. Zhou, Acc. Chem. Res. 51 (2018) 1443-1454;
      (d) Q. Zhao, C. Peng, H. Huang, et al., Chem. Commun. 54 (2018) 8359-8362;
      (e) G.J. Mei, F. Shi, Chem. Commun. 54 (2018) 6607-6621;
      (f) K.K. Wang, W. Du, J. Zhu, Y.C. Chen, Chin. Chem. Lett. 28 (2017) 512-516;
      (g) N.Y. Chen, L.P. Ren, M.M. Zou, et al., Chin. Chem. Lett. 25 (2014) 197-200.

    10. [10]

      (a) B.M. Trost, N. Cramer, S.M. Silverman, J. Am. Chem. Soc. 129 (2007) 12396-12397;
      (b) G. Zhan, M.L. Shi, Q. He, et al., Angew. Chem. Int. Ed. 55 (2016) 2147-2151;
      (c) B. Wang, X.H. Wang, W. Huang, et al., J. Org. Chem. 84 (2019) 10349-10361;
      (d) X. Zhao, J. Xiong, J. An, et al., Org. Chem. Front. 6 (2019) 1989-1995;
      (e) B. Wang, F. Peng, W. Huang, et al., Acta Pharm. Sin. B 10 (2020) 1492-1510;
      (f) P.D. Chaudhari, B.C. Hong, G.H. Lee, Org. Lett. 19 (2017) 6112-6115;
      (g) Y. He, Y. Liu, Y. Liu, et al., Adv. Synth. Catal. 362 (2020) 2052-2058.

    11. [11]

      (a) G. Zhong, D. Shabat, B. List, et al., Angew. Chem. Int. Ed. 37 (1998) 2481-2484;
      (b) S. Beltrán-Rodil, J.R. Donald, M.G. Edwards, et al., Tetrahedron Lett. 50 (2009) 3378-3380;
      (c) M.E. Jung, J.J. Chang, Org. Lett. 14 (2012) 4898-4901;
      (d) Y. Yan, L. Feng, G. Li, et al., ACS Catal. 7 (2017) 4473-4478;
      (e) H. Nonaka, Y. Nakanishi, S. Kuno, et al., Nat. Commun. 10 (2019) 876.

    12. [12]

      (a) M.E. Flanagan, J.R. Jacobsen, E. Sweet, P.G. Schultz, J. Am. Chem. Soc. 118 (1996) 6078-6079;
      (b) P.R. Carlier, C.W.S. Lo, M.M.C. Lo, N.C. Wan, I.D. Williams, Org. Lett. 2 (2000) 2443-2445;
      (c) S. Cai, Z. Liu, W. Zhang, X. Zhao, D.Z. Wang, Angew. Chem. Int. Ed. 50 (2011) 11133-11137;
      (d) C. Richter, M. Krumrey, M. Bahri, S. Trunschke, R. Mahrwald, ACS Catal. 6 (2016) 5549-5552;
      (e) S.L. Zhang, Z.Q. Deng, Org. Biomol. Chem. 14 (2016) 8966-8970;
      (f) S.L. Zhang, Z.L. Yu, Org. Biomol. Chem. 14 (2016) 10511-10515;
      (g) R. Maity, C. Gharui, A.K. Sil, S.C. Pan, Org. Lett. 19 (2017) 662-665;
      (h) S. Liu, T. Zhang, L. Zhu, et al., Chem. Commun. 54 (2018) 13551-13554;
      (i) J. Wang, Z.X. Deng, C.M. Wang, et al., Org. Lett. 20 (2018) 7535-7538;
      (j) F. Liu, L. Zhu, T. Zhang, et al., ACS Catal. 10 (2019) 1256-1263;
      (k) Y.X. Song, D.M. Du, Adv. Synth. Catal. 361 (2019) 5042-5049;
      (l) R.A.S. Pike, R.R. Sapkota, B. Shrestha, et al., Org. Lett. 22 (2020) 3268-3272.

    13. [13]

      (a) E. Sánchez-Larios, J.M. Holmes, C.L. Daschner, M. Gravel, Org. Lett. 12 (2010) 5772-5775;
      (b) X. Yang, P.K. Majhi, H. Chai, et al., Angew. Chem. Int. Ed. 60 (2021) 159-165;
      (c) J. Kaeobamrung, J.W. Bode, Org. Lett. 11 (2009) 677-680.

    14. [14]

      K. Albertshofer, K.E. Anderson, C.F. Barbas Ⅲ, Org. Lett. 14(2012) 5968-5971.  doi: 10.1021/ol302876c

  • 加载中
    1. [1]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    2. [2]

      Qian WangYeping BianGagan DhawanWei ZhangAlexander E. SorochinskyAta MakaremVadim A. SoloshonokJianlin Han . FDA approved fluorine-containing drugs in 2023. Chinese Chemical Letters, 2024, 35(11): 109780-. doi: 10.1016/j.cclet.2024.109780

    3. [3]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    4. [4]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    5. [5]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    8. [8]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    9. [9]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    10. [10]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    11. [11]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    12. [12]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    13. [13]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    14. [14]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199

    15. [15]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    16. [16]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    17. [17]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    18. [18]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    19. [19]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    20. [20]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

Metrics
  • PDF Downloads(9)
  • Abstract views(540)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return