Citation: Jie Ren, Yanzhen Huang, Chao Pi, Xiuling Cui, Yangjie Wu. Rhodium(III)-catalyzed [4 + 2] annulation of N-arylbenzamidines with 1, 4, 2-dioxazol-5-ones: Easy access to 4-aminoquinazolines via highly selective CH bond activation[J]. Chinese Chemical Letters, ;2021, 32(8): 2592-2596. doi: 10.1016/j.cclet.2021.02.061 shu

Rhodium(III)-catalyzed [4 + 2] annulation of N-arylbenzamidines with 1, 4, 2-dioxazol-5-ones: Easy access to 4-aminoquinazolines via highly selective CH bond activation

    * Corresponding authors.
    E-mail addresses: cuixl@zzu.edu.cn (X. Cui), wyj@zzu.edu.cn (Y. Wu).
  • Received Date: 6 January 2021
    Revised Date: 24 February 2021
    Accepted Date: 25 February 2021
    Available Online: 27 February 2021

Figures(6)

  • A novel approach for the synthesis of 4-aminoquinazolines has been developed via rhodium(III)-catalyzed [4 + 2] annulation of N-arylbenzamidines with 1, 4, 2-dioxazol-5-ones. This reaction features excellent regioselectivity, broad substrate scope and high step economy, which would provide the reference for the construction of the fused 4-aminoquinazolines with biologically and pharmacologically active compounds.
  • 加载中
    1. [1]

      (a) J.P. Michael, Nat. Prod. Rep. 25 (2008) 166–187;
      (b) R. Gundla, R. Kazemi, R. Sanam, et al., J. Med. Chem. 51 (2008) 3367–3377;
      (c) M.J. Hour, J.S. Yang, T.L. Chen, et al., Eur. J. Med. Chem. 46 (2011) 2709–2721;
      (d) M.N.N. Lima, G.C. Cassiano, K.C.P. Tomaz, et al., Front. Chem. 7 (2019) 773;
      (e) R.L. Clements, V. Streva, P. Dumoulin, et al., J. Infect. Dis. 221 (2020) 956–962;
      (f) F. Wu, L. Zhuo, F. Wang, et al., iScience 23 (2020) 101179.

    2. [2]

      (a) K. Juvale, J. Gallus, M. Wiese, Bioorg. Med. Chem. 21 (2013) 7858–7873;
      (b) M.K. Krapf, M. Wiese, J. Med. Chem. 59 (2016) 5449–5461;
      (c) M.K. Krapf, J. Gallus, M. Wiese, J. Med. Chem. 60 (2017) 4474–4495;
      (d) M.K. Krapf, J. Gallus, V. Namasivayam, M. Wiese, J. Med. Chem. 61 (2018) 7952–7976;
      (e) M.K. Krapf, J. Gallus, A. Spindler, M. Wiese, J. Med. Chem. 161 (2019) 506–525.

    3. [3]

      (a) S.F. Campbell, M.J. Davey, J.D. Hardstone, B.N. Lewis, M.J. Palmer, J. Med. Chem. 30 (1987) 49–57;
      (b) S. Paliwal, A. Mittal, M. Sharma, et al., Med. Chem. Res. 24 (2015) 576–587.

    4. [4]

      M.J. Hour, J.S. Yang, T.L. Chen, et al., Eur. J. Med. Chem. 46 (2011) 2709–2721.  doi: 10.1016/j.ejmech.2011.03.059

    5. [5]

      B. Moy, P. Kirkpatrick, S. Kar, P. Goss, Nat. Rev. Drug Discov. 6 (2007) 431–432.  doi: 10.1038/nrd2332

    6. [6]

      (a) F.C. Jia, Z.W. Zhou, C. Xu, et al., Org. Lett. 17 (2015) 4236–4239;
      (b) V. Este'vez, G.V. Baelen, B.H. Lentferink, et al., ACS Catal. 4 (2014) 40–43;
      (c) D.S. Yoon, Y. Han, T.M. Stark, et al., Org. Lett. 6 (2004) 4775–4778;
      (d) X.Y. Mao, X.T. Lin, M. Yang, G.S. Chen, Y.L. Lin, Adv. Synth. Catal. 360 (2018) 3643–3648.

    7. [7]

      (a) N.Y. Kim, C.H. Cheon, Tetrahedron Lett. 55 (2014) 2340–2344;
      (b) M. Staderini, M.L. Bolognesi, J.C. Men[75_TD$DIF]éndez, Adv. Syn. Catal. 357 (2015) 185–195.

    8. [8]

      Y. Wang, H. Wang, J. Peng, Q. Zhu, Org. Lett. 13 (2011) 4604–4607.  doi: 10.1002/chin.201201140

    9. [9]

      (a) W. Yang, S. Ye, D. Fanning, et al., Angew. Chem. Int. Ed. 54 (2015) 2501–2504;
      (b) X. Wang, Y. Li, T. Knecht, et al., Angew. Chem. Int. Ed. 57 (2018) 5520–5524;
      (c) Y. Hwang, Y. Park, Y.B. Kim, D. Kim, S. Chang, Angew. Chem. Int. Ed. 57 (2018) 13565–13569;
      (d) R. Mi, G. Zheng, Z. Qi, X. Li, Angew. Chem. Int. Ed. 58 (2019) 17666–17670;
      (e) G. Zheng, J. Sun, Y. Xu, S. Zhai, X. Li, Angew. Chem. Int. Ed. 58 (2019) 5090–5094;
      (f) J.S. Ham, B. Park, M. Son, et al., J. Am. Chem. Soc. 142 (2020) 13041–13050;
      (g) L. Fan, J. Hao, J. Yu, et al., J. Am. Chem. Soc. 142 (2020) 6698–6707;
      (h) L. Kong, X. Han, S. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 7188–7192;
      (i) Y. Luo, H. Liu, J. Zhang, M. Liu, L. Dong, Org. Lett. 22 (2020) 7604–7608;
      (j) H. Li, X. Cui, Chin. J. Org. Chem. 2 (2020) 543–544;
      (k) Y. Dong, R. Liu, W. Wang, Green Synth. Catal. 2 (2020) 83–85.

    10. [10]

      (a) J. Wu, X. Cui, L. Chen, G. Jiang, Y. Wu, J. Am. Chem. Soc. 131 (2009) 13888–13889;
      (b) X.X. Guo, D.W. Gu, Z. Wu, W. Zhang, Chem. Rev. 115 (2015) 1622–1651;
      (c) F. Wang, S. Yu, X. Li, Chem. Soc. Rev. 45 (2016) 6462–6477;
      (d) X. Wang, A. Lerchen, T. Gensch, et al., Angew. Chem. Int. Ed. 56 (2017) 1381–1384;
      (e) Y. Zhao, S. Li, X. Zheng, et al., Angew. Chem. Int. Ed. 56 (2017) 4286–4289;
      (f) Y. Li, F. Xie, Y. Liu, X. Yang, X. Li, Org. Lett. 20 (2018) 437–440.

    11. [11]

      (a) G. Brasche, S.L. Buchwald, Angew. Chem. Int. Ed 47 (2008) 1932–1934;
      (b) B. Ma, Y. Wang, J. Peng, Q. Zhu, J. Org. Chem. 76 (2011) 6362–6366;
      (c) J. Li, L. Neuville, Org. Lett. 15 (2013) 1752–1755;
      (d) J. Li, M. John, L. Ackermann, Chem. Eur. J. 20 (2014) 5403–5408;
      (e) Y. Zhu, C. Li, J. Zhang, et al., Org. Lett. 17 (2015) 3872–3975;
      (f) J. Li, M. Tang, L. Zang, et al., Org. Lett. 18 (2016) 2742–2745;
      (g) X. Zhou, Z. Qi, S. Yu, et al., Adv. Syn. Catal. 359 (2017) 1620–1625;
      (h) J. Zhou, J. Li, Y. Li, et al., Org. Lett. 20 (2018) 7645–7649;
      (i) H.B. Xu, Y.Y. Zhu, L. Dong, J. Org. Chem. 84 (2019) 16286–16292;
      (j) H. Xing, J. Chen, Y. Shi, et al., Org. Chem. Front. 7 (2020) 672–677;
      (k) F. Xu, Y.Y. Song, W.J. Zhu, et al., Chem. Commun. 56 (2020) 11227–11230.

    12. [12]

      (a) Y. Li, Z. Qi, H. Wang, X. Yang, X. Li, Angew. Chem. Int. Ed. 55 (2016) 11877–11881;
      (b) Z. Qi, S. Yu, X. Li, Org. Lett. 18 (2016) 700–703;
      (c) R. Lai, X. Wu, S. Lv, et al., Chem. Commun. 55 (2019) 4039–4042.

    13. [13]

      (a) L. Xu, L. Wang, Y. Feng, et al., Org. Lett. 19 (2017) 4343–4346;
      (b) Y. Li, C. Jia, H. Li, et al., Org. Lett. 20 (2018) 4930–4933;
      (c) S. Huang, H. Li, X. Sun, et al., Org. Lett. 21 (2019) 5570–5574;
      (d) Y. Hu, T. Wang, Y. Liu, et al., Org. Lett. 22 (2019) 501–504.

    14. [14]

      (a) X. Wei, M. Zhao, Z. Du, X. Li, Org. Lett. 13 (2011) 4636–4639;
      (b) G. Zheng, M. Tian, Y. Xu, X. Chen, X. Li, Org. Chem. Front. 5 (2018) 998–1002;
      (c) Q. Yang, C. Wu, J. Zhou, et al., Org. Chem. Front. 6 (2019) 393–398;
      (d) F. Xu, Y.Y. Song, W.J. Zhu, et al., Chem. Commun. 56 (2020) 11227–11230.

    15. [15]

      (a) C. You, C. Pi, Y. Wu, X. Cui, Adv. Syn. Catal. 360 (2018) 4068–4072;
      (b) S. Du, C. Pi, T. Wan, Y. Wu, X. Cui, Adv. Syn. Catal. 361 (2019) 1766–1770;
      (c) Z. Shen, C. Pi, X. Cui, Y. Wu, Chin. Chem. Lett. 30 (2019) 1374–1378;
      (d) T. Yuan, C. Pi, C. You, et al., Chem. Commun 55 (2019) 163–166;
      (e) J. Ren, C. Pi, Y. Wu, X. Cui, Org. Lett. 21 (2019) 4067–4071;
      (f) Y. Wu, C. Pi, X. Cui, Y. Wu, Org. Lett. 22 (2020) 361–364;
      (g) J. Ren, X. Yan, X. Cui, et al., Green Chem. 22 (2020) 265–269.

    16. [16]

      Q. Mei, L. Wang, Y. Guo, et al., J. Mater. Chem. 22 (2012) 6878–6884.

    17. [17]

      (a) R. Rohini, K. Shanker, P.M. Reddy, Y.P. Ho, V. Ravinder, Eur. J. Med. Chem. 44 (2009) 3330–3339;
      (b) J.C. Li, R.X. Wang, Y. Sun, et al., Bioorgan. Chem. 92 (2019) 103266.

  • 加载中
    1. [1]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    2. [2]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    3. [3]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    4. [4]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    7. [7]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    8. [8]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    9. [9]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    10. [10]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    11. [11]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    12. [12]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    13. [13]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    17. [17]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    18. [18]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Dai-Huo LiuAo WangHong-Yan LüXing-Long WuDan LuoWen-Hao LiJin-Zhi GuoHaozhen DouQianyi MaZhongwei ChenIn situ constructing (MnS/Mn2SnS4)@N,S-ACTs heterostructure with superior Na/Li-storage capabilities in half-cells and pouch full-cells. Chinese Chemical Letters, 2024, 35(11): 109285-. doi: 10.1016/j.cclet.2023.109285

Metrics
  • PDF Downloads(11)
  • Abstract views(544)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return