Citation: Peipei Jiang, Tingting Zhao, Jian Rong, Bangshao Yin, Yutao Rao, Mingbo Zhou, Ling Xu, Jianxin Song. Multi-(phenylthio)porphyrinato Ni(Ⅱ) compounds: Synthesis, structures and properties[J]. Chinese Chemical Letters, ;2021, 32(8): 2562-2566. doi: 10.1016/j.cclet.2021.02.022 shu

Multi-(phenylthio)porphyrinato Ni(Ⅱ) compounds: Synthesis, structures and properties

    *Corresponding authors.
    E-mail addresses: xulingchem@hunnu.edu.cn (L. Xu), jxsong@hunnu.edu.cn (J. Song).
  • Received Date: 24 December 2020
    Revised Date: 2 February 2021
    Accepted Date: 10 February 2021
    Available Online: 15 February 2021

Figures(4)

  • A series of multi-(phenylthio)porphyrinato Ni(ò) compounds were synthesized without the participation of transition metal catalysts. All of these products were well characterized by 1H NMR, 13C NMR and HRMS. Structures of three typical compounds were further confirmed by X-ray single crystal diffraction. Remarkable red shifts were observed in UVɃvis absorption spectra of multi-(phenylthio)porphyrinato Ni(ò) compounds which meet well with the electrochemical data. DFT calculation indicates that the phenylthio groups have strong effects on the frontier orbitals of these molecules. The order of a1u-like and a2u-like orbitals mainly distributed in porphyrin moiety is often inversed in energy when multi-phenylthio groups are attached.
  • 加载中
    1. [1]

      (a) K.M. Kadish, K.M. Smith, R. Guilard, The Porphyrin Handbook San Diego, (2000);
      (b) C. Li, J. Zhang, J. Song, Y. Xie, J. Jiang, Sci. China Chem. 61 (2018) 511-514;
      (c) W. Miao, Z. Zhu, Z. Li, E. Hao, L. Jiao, Chin. Chem. Lett. 30 (2019) 1895-1902.

    2. [2]

      (a) K. Zeng, Z. Tong, L. Ma, et al., Energy Environ. Sci. 13 (2020) 1617-1657;
      (b) A. Mahmood, J.Y. Hu, B. Xiao, et al., J. Mater. Chem. A 6 (2018) 16769-16797;
      (c) M. Urbani, M. Grätzel, M.K. Nazeeruddin, T. Torres, Chem. Rev. 114 (2014) 12330-12396;
      (d) L.L. Li, E.W.G. Diau, Chem. Soc. Rev. 42 (2013) 291-304;
      (e) Y. Rio, P. Vázquez, E. Palomares, J. Porphyrins Phthalocyanines 13 (2009) 646-651.

    3. [3]

      (a) M. Pawlicki, H.A. Collins, R.G. Denning, H.L. Anderson, Angew. Chem. Int. Ed. 48 (2009) 3244-3266;
      (b) N. Aratani, D. Kim, A. Osuka, Chem. Asian J. 4 (2009) 1172-1182;
      (c) K.S. Kim, J.M. Lim, A. Osuka, D. Kim, J. Photochem. Photobiol. C 9 (2008) 13-28.

    4. [4]

      (a) J. Tian, B. Huang, M.H. Nawaz, W. Zhang, Coord. Chem. Rev. 420 (2020) 213410-213429;
      (b) S.M.M. Lopes, M. Pineiro, T.M.V.D. Pinho e Melo, Molecules 25 (2020) 3450-3488;
      (c) R.D. Teo, J.Y. Hwang, J. Termini, Z. Gross, H.B. Gray, Chem. Rev. 117 (2017) 2711-2729;
      (d) M. Ethirajan, Y. Chen, P. Joshi, R.K. Pandey, Chem. Soc. Rev. 40 (2011) 340-362.

    5. [5]

      M. Berthelot, G. Hoffmann, A. Bousfiha, et al., Chem. Commun. (Camb. ) 54(2018) 5414-5417.  doi: 10.1039/C8CC01375F

    6. [6]

      R.A. Binstead, M.J. Crossley, N.S. Hush, Inorg. Chem. 30(1991) 1259-1264.  doi: 10.1021/ic00006a019

    7. [7]

      M.S. Liao, S. Scheiner, Chem. Phys. Lett. 367(2003) 199-206.  doi: 10.1016/S0009-2614(02)01700-1

    8. [8]

      (a) L.L. Yang, X.L. Hu, Z.Q. Tang, X.F. Li, Chem. Lett. 44 (2015) 1515-1517;
      (b) D.M. Shen, C. Liu, X.G. Chen, Q.Y. Chen, J. Org. Chem. 74 (2009) 206-211.

    9. [9]

      (a) A. Jana, M. Ishida, K. Kwak, et al., Chem. Eur. J. 19 (2013) 338-349;
      (b) K.A. Nielsen, E. Levillain, V.M. Lynch, J.L. Sessler, J.O. Jeppesen, Chem. Eur. J. 15 (2009) 506-516;
      (c) H. Li, J.O. Jeppesen, E. Levillain, J. Becher Chem. Commun. (2003) 846-847;
      (d) J. Becher, T. Brimert, J.O. Jeppesen, et al., Angew. Chem. Int. Ed. 40 (2001) 2497-2500;
      (e) K.I. Sugiura, K. Ushiroda, M.T. Johnson, J.S. Miller, Y. Sakata, J. Mater. Chem. 10 (2000) 2507-2514;
      (f) K.I. Sugiura, M.R. Kumar, T.K. Chandrashekar, Y. Sakata, Chem. Lett. 26 (1997) 291-292.

    10. [10]

      (a) N. Fukui, A. Osuka, Bull. Chem. Soc. Jpn. 91 (2018) 1131-1137;
      (b) K. Fujimoto, H. Yorimitsu, A. Osuka, Org. Lett. 16 (2014) 972-975;
      (c) A.A. Ryan, S. Plunkett, A. Casey, T. McCabe, M.O. Senge, Chem. Commun. (Camb. ) 50 (2014) 353-355;
      (d) G.Y. Gao, A.J. Colvin, Y. Chen, X.P. Zhang, J. Org. Chem. 69 (2004) 8886-8892.

    11. [11]

      (a) H.C. Sample, M.O. Senge, Eur. J. Org. Chem. 2021 (2021) 7-42;
      (b) M. Kielmann, K.J. Flanagan, K. Norvaiša, D. Intrieri, M.O. Senge, J. Org. Chem. 82 (2017) 5122-5134;
      (c) Q. Chen, Y.Z. Zhu, Q.J. Fan, S.C. Zhang, J.Y. Zheng, Org. Lett. 16 (2014) 1590-1593;
      (d) M.J. Crossley, P.L. Burn, S.S. Chew, F.B. Cuttance, I.A. Newsom, J. Chem. Soc. Chem. Commun. (1991) 1564-1566;
      (e) F. Ma, L. Zhou, Q. Liu, C. Li, Y. Xie, Org. Lett. 21 (2019) 733-736.

    12. [12]

      N. Fukui, H. Yorimitsu, A. Osuka, Angew. Chem. Int. Ed. 54(2015) 6311-6314.  doi: 10.1002/anie.201501149

    13. [13]

      (a) A. Tsuda, H. Furuta, A. Osuka, J. Am. Chem. Soc. 123 (2001) 10304-10321;
      (b) D. Shimizu, K. Fujimoto, A. Osuka, Angew. Chem. Int. Ed. 57 (2018) 9434-9438;
      (c) K. Kato, K. Furukawa, A. Osuka, Chem. Eur. J. 24 (2018) 572-575.

    14. [14]

      (a) K. Fujimoto, H. Yorimitsu, A. Osuka, Org. Lett. 16 (2014) 972-975;
      (b) K. Fujimoto, H. Yorimitsu, A. Osuka, Org. Lett. 16 (2014) 3172.

  • 加载中
    1. [1]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    2. [2]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    3. [3]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    4. [4]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    5. [5]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    6. [6]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    7. [7]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    8. [8]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    9. [9]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    10. [10]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    11. [11]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    12. [12]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    13. [13]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    14. [14]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    15. [15]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    16. [16]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    17. [17]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    18. [18]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    19. [19]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    20. [20]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

Metrics
  • PDF Downloads(3)
  • Abstract views(403)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return