Transition metal-based electrocatalysts for overall water splitting
-
* Corresponding author.
E-mail address: lzqgzu@gzhu.edu.cn (Zhao-Qing Liu).
Citation: Xiao-Peng Li, Can Huang, Wen-Kai Han, Ting Ouyang, Zhao-Qing Liu. Transition metal-based electrocatalysts for overall water splitting[J]. Chinese Chemical Letters, ;2021, 32(9): 2597-2616. doi: 10.1016/j.cclet.2021.01.047
P. De Luna, C. Hahn, D. Higgins, et al., Science 364(2019) eaav3506.
doi: 10.1126/science.aav3506
M.S. Dresselhaus, I.L. Thomas, Nature 414(2001) 332-337.
doi: 10.1038/35104599
X. Zou, Y. Zhang, Chem. Soc. Rev. 44(2015) 5148-5180.
doi: 10.1039/C4CS00448E
Y. Hou, X. Zhuang, X. Feng, Small Methods 1(2017) 1700090.
doi: 10.1002/smtd.201700090
Y. Chen, X. Deng, J. Wen, J. Zhu, Z. Bian, Appl. Catal. B 258(2019) 118024.
doi: 10.1016/j.apcatb.2019.118024
J. Wen, L. Ling, Y. Chen, Z. Bian, Chin. J. Catal. 41(2020) 1674-1681.
doi: 10.1016/S1872-2067(20)63581-1
Y. Feng, M. Xu, H. Liu, et al., Nano Energy 73(2020) 104768.
doi: 10.1016/j.nanoen.2020.104768
X. Deng, Y. Chen, J. Wen, et al., Sci. Bull. (Beijing) 65(2020) 105-112.
doi: 10.1016/j.scib.2019.10.020
Y.F. Xu, H.S. Rao, B.X. Chen, et al., Adv. Sci. 2(2015) 1500049.
doi: 10.1002/advs.201500049
H. Tang, C.M. Hessel, J. Wang, et al., Chem. Soc. Rev. 43(2014) 4281-4299.
doi: 10.1039/C3CS60437C
J. Luo, J.H. Im, M.T. Mayer, et al., Science 345(2014) 1593-1596.
doi: 10.1126/science.1258307
A. Le Goff, V. Artero, B. Jousselme, et al., Science 326(2009) 1384-1387.
doi: 10.1126/science.1179773
J.A. Turner, Science 305(2004) 972-974.
doi: 10.1126/science.1103197
T.R. Cook, D.K. Dogutan, S.Y. Reece, et al., Chem. Rev. 110(2010) 6474-6502.
doi: 10.1021/cr100246c
M.G. Walter, E.L. Warren, J.R. McKone, et al., Chem. Rev. 110(2010) 6446-6473.
doi: 10.1021/cr1002326
S.T. Hunt, M. Milina, Z. Wang, Y. Román-Leshkov, Energy Environ. Sci. 9(2016) 3290-3301.
doi: 10.1039/C6EE01929C
N.S. Lewis, Science 315(2007) 798-801.
doi: 10.1126/science.1137014
Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, Angew. Chem. Int. Ed. 57(2018) 7568-7579.
doi: 10.1002/anie.201710556
S. Marini, P. Salvi, P. Nelli, et al., Electrochim. Acta 82(2012) 384-391.
doi: 10.1016/j.electacta.2012.05.011
K.F.L. Hagesteijn, S. Jiang, B.P. Ladewig, J. Mater, Sci. 53(2018) 11131-11150.
doi: 10.1007/s10853-018-2409-y
I. Vincent, D. Bessarabov, Renewable Sustainable Energy Rev. 81(2018) 1690-1704.
doi: 10.1016/j.rser.2017.05.258
R. Subbaraman, D. Tripkovic, D. Strmcnik, et al., Science 334(2011) 1256-1260.
doi: 10.1126/science.1211934
Y. Shi, B. Zhang, Chem. Soc. Rev. 45(2016) 1529-1541.
doi: 10.1039/C5CS00434A
J.W.D. Ng, M. García-Melchor, M. Bajdich, et al., Nat. Energy 1(2016) 16053-16061.
doi: 10.1038/nenergy.2016.53
B. Fei, Z. Chen, J. Liu, et al., Adv. Energy Mater. 10(2020) 2001963.
doi: 10.1002/aenm.202001963
D. Zhou, B. Jiang, R. Yang, X. Hou, C. Zheng, Chin. Chem. Lett. 31(2020) 1540-1544.
H. Zhou, F. Yu, Q. Zhu, et al., Energy Environ. Sci. 11(2018) 2858-2864.
doi: 10.1039/C8EE00927A
L. Shao, H. Sun, L. Miao, et al., J. Mater. Chem. A: Mater. Energy Sustain. 6(2018) 2494-2499.
doi: 10.1039/C7TA10884B
G. Wei, K. Du, X. Zhao, et al., Chin. Chem. Lett. 31(2020) 2641-2644.
doi: 10.1016/j.cclet.2020.02.029
J. Yu, T.A. Le, N.Q. Tran, H. Lee, Chem. 26(2020) 6423-6436.
doi: 10.1002/chem.202000209
J. Yin, J. Jin, H. Lin, et al., Adv. Sci. 7(2020) 1903070.
doi: 10.1002/advs.201903070
J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Chem. Rev. 120(2019) 851-918.
doi: 10.1021/acs.chemrev.9b00248
Q. Gao, W. Zhang, Z. Shi, L. Yang, Y. Tang, Adv. Mater. 31(2019) 1802880.
doi: 10.1002/adma.201802880
K. Wang, X. Wang, Z. Li, et al., Nano Energy 77(2020) 105162.
doi: 10.1016/j.nanoen.2020.105162
C. Lei, S. Lyu, J. Si, et al., ChemCatChem 11(2019) 5855-5874.
doi: 10.1002/cctc.201901707
J.Y. Wang, W.T. Liu, X.P. Li, T. Ouyang, Z.Q. Liu, Chem. Comm. 56(2020) 1489-1492.
doi: 10.1039/C9CC09303F
J.Y. Wang, T. Ouyang, Y.P. Deng, Y.S. Hong, Z.Q. Liu, J. Power Sources 420(2019) 108-117.
doi: 10.1016/j.jpowsour.2019.02.098
L. Liao, X. Bian, J. Xiao, et al., Phys. Chem. Chem. Phys. 16(2014) 10088-10094.
doi: 10.1039/C3CP54754J
R. Chen, S.F. Hung, D. Zhou, et al., Adv. Mater. 31(2019) 1903909.
doi: 10.1002/adma.201903909
X.P. Li, W.K. Han, K. Xiao, et al., Catal. Sci. Technol. 10(2020) 4184-4190.
doi: 10.1039/D0CY00315H
L. Zeng, L. Yang, J. Lu, et al., Chin. Chem. Lett. 29(2018) 1875-1878.
doi: 10.1016/j.cclet.2018.10.026
B. Wang, C. Tang, H.F. Wang, et al., Small Methods 2(2018) 1800055.
doi: 10.1002/smtd.201800055
N.R. Chodankar, S.H. Ji, Y.K. Han, D.H. Kim, Nano-Micro Lett. 12(2020) 1-12.
doi: 10.1007/s40820-019-0337-2
X. Zhao, B. Pattengale, D. Fan, et al., ACS Energy Lett. 3(2018) 2520-2526.
doi: 10.1021/acsenergylett.8b01540
Y. Tong, H. Liu, M. Dai, L. Xiao, X. Wu, Chin. Chem. Lett. 31(2020) 2295-2299.
doi: 10.1016/j.cclet.2020.03.029
M. Hu, S. Zhao, S. Liu, et al., Adv. Mater. 30(2018) 1801878.
doi: 10.1002/adma.201801878
F.M. Zhang, J.L. Sheng, Z.D. Yang, et al., Angew. Chem. Int. Ed. 57(2018) 12106-12110.
doi: 10.1002/anie.201806862
D.H. Nam, O.S. Bushuyev, J. Li, et al., J. Am. Chem. Soc. 140(2018) 11378-11386.
doi: 10.1021/jacs.8b06407
J. Huang, Y. Sun, X. Du, et al., Adv. Mater. 30(2018) 1803367.
doi: 10.1002/adma.201803367
T. Ouyang, X.T. Wang, X.Q. Mai, et al., Angew. Chem. Int. Ed. 59(2020) 11948-11957.
doi: 10.1002/anie.202004533
H. Cheng, Y.Z. Su, P.Y. Kuang, G.F. Chen, Z.Q. Liu, J. Mater. Chem. A: Mater. Energy Sustain. 3(2015) 19314-19321.
doi: 10.1039/C5TA03985A
H. Cheng, C.Y. Su, Z.Y. Tan, S.Z. Tai, Z.Q. Liu, J. Power Sources 357(2017) 1-10.
doi: 10.1016/j.jpowsour.2017.04.091
T. Ouyang, A.N. Chen, Z.Z. He, Z.Q. Liu, Y. Tong, Chem. Comm. 54(2018) 9901-9904.
doi: 10.1039/C8CC03975E
Y. Zhou, S. Sun, J. Song, et al., Adv. Mater. 30(2018) 1802912.
doi: 10.1002/adma.201802912
Y. Yu, J. Zhou, Z. Sun, Adv. Funct. Mater. 30(2020) 2000570.
doi: 10.1002/adfm.202000570
S. Anantharaj, S.R. Ede, K. Sakthikumar, et al., ACS Catal. 6(2016) 8069-8097.
doi: 10.1021/acscatal.6b02479
S. Chandrasekaran, L. Yao, L. Deng, et al., Chem. Soc. Rev. 48(2019) 4178-4280.
doi: 10.1039/C8CS00664D
D. He, X. Wu, W. Liu, et al., Chin. Chem. Lett. 30(2019) 229-233.
doi: 10.1016/j.cclet.2018.03.020
G.F. Chen, T.Y. Ma, Z.Q. Liu, et al., Adv. Funct. Mater. 26(2016) 3314-3323.
doi: 10.1002/adfm.201505626
M.R. Gao, J.X. Liang, Y.R. Zheng, et al., Nat. Commun. 6(2015) 5982.
doi: 10.1038/ncomms6982
X. Xu, F. Song, X. Hu, Nat. Commun. 7(2016) 12324.
doi: 10.1038/ncomms12324
J.Y. Wang, T. Ouyang, N. Li, T.Y. Ma, Z.Q. Liu, Sci. Bull. (Beijing) 63(2018) 1130-1140.
doi: 10.1016/j.scib.2018.07.008
L. Chai, Z. Hu, X. Wang, et al., Adv. Sci. 7(2020) 1903195.
doi: 10.1002/advs.201903195
L. Wu, L. Yu, F. Zhang, et al., Adv. Funct. Mater. (2020) 2006484.
C. Huang, Y. Zou, Y.Q. Ye, et al., Chem. Comm. 55(2019) 7687-7690.
doi: 10.1039/C9CC03024G
Y. Ji, J. Xie, Y. Yang, et al., Chin. Chem. Lett. 31(2020) 855-858.
doi: 10.1016/j.cclet.2019.06.021
F. Cheng, L. Wang, H. Wang, et al., Nano Energy 71(2020) 104621.
doi: 10.1016/j.nanoen.2020.104621
J.K. Nørskov, T. Bligaard, A. Logadottir, et al., J. Electrochem. Soc. 152(2005) J23-J26.
doi: 10.1149/1.1856988
J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Norskov, Nat. Mater. 5(2006) 909-913.
doi: 10.1038/nmat1752
S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem. 39(1972) 163-184.
doi: 10.1016/S0022-0728(72)80485-6
J. Kang, J. Hwang, B. Han, J. Phys. Chem. C 122(2018) 2107-2112.
doi: 10.1021/acs.jpcc.7b09294
T.F. Jaramillo, K.P. Jorgensen, J. Bonde, et al., Science 317(2007) 100-102.
doi: 10.1126/science.1141483
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355(2017) eaad4998.
doi: 10.1126/science.aad4998
D.R. Weinberg, C.J. Gagliardi, J.F. Hull, et al., Chem. Rev. 112(2012) 4016-4093.
doi: 10.1021/cr200177j
W.T. Hong, M. Risch, K.A. Stoerzinger, et al., Energy Environ. Sci. 8(2015) 1404-1427.
doi: 10.1039/C4EE03869J
M.T.M. Koper, J. Electroanal. Chem. (Lausanne) 660(2011) 254-260.
doi: 10.1016/j.jelechem.2010.10.004
M. Wohlfahrt-Mehrens, J. Heitbaum, J. Electroanal. Chem. Interfacial Electrochem. 237(1987) 251-260.
doi: 10.1016/0022-0728(87)85237-3
J.H. Montoya, L.C. Seitz, P. Chakthranont, et al., Nat. Mater. 16(2016) 70-81.
doi: 10.1038/nmat4778
S. Li, G. Zhang, X. Tu, J. Li, ChemElectroChem 5(2018) 701-707.
doi: 10.1002/celc.201701112
X. Ji, C. Cheng, Z. Zang, et al., J. Mater. Chem. A: Mater. Energy Sustain. 8(2020) 21199-21207.
doi: 10.1039/D0TA07676G
H. Xu, S. Ci, Y. Ding, G. Wang, Z. Wen, J. Mater. Chem. A: Mater. Energy Sustain. 7(2019) 8006-8029.
doi: 10.1039/C9TA00833K
H. Du, R.M. Kong, X. Guo, F. Qu, J. Li, Nanoscale 10(2018) 21617-21624.
doi: 10.1039/C8NR07891B
K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 36(2010) 307-326.
doi: 10.1016/j.pecs.2009.11.002
W. Wang, X. Xu, W. Zhou, Z. Shao, Adv. Sci. 4(2017) 1600371.
doi: 10.1002/advs.201600371
J. Rossmeisl, A. Logadottir, J.K. Nørskov, Chem. Phys. 319(2005) 178-184.
doi: 10.1016/j.chemphys.2005.05.038
J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, J. Electroanal. Chem. (Lausanne) 607(2007) 83-89.
doi: 10.1016/j.jelechem.2006.11.008
I.C. Man, H.Y. Su, F. Calle-Vallejo, et al., ChemCatChem 3(2011) 1159-1165.
doi: 10.1002/cctc.201000397
O. Diaz-Morales, I. Ledezma-Yanez, M.T.M. Koper, F. Calle-Vallejo, ACS Catal. 5(2015) 5380-5387.
doi: 10.1021/acscatal.5b01638
S. Trasatti, O.A. Petrii, J. Electroanal. Chem. (Lausanne) 327(1992) 353-376.
doi: 10.1016/0022-0728(92)80162-W
H. Jin, C. Guo, X. Liu, et al., Chem. Rev. 118(2018) 6337-6408.
doi: 10.1021/acs.chemrev.7b00689
S. Czioska, J. Wang, X. Teng, Z. Chen, ACS Sustainable Chem. Eng. 6(2018) 11877-11883.
doi: 10.1021/acssuschemeng.8b02155
R. Karimi Shervedani, M. Torabi, F. Yaghoobi, Electrochim. Acta 244(2017) 230-238.
doi: 10.1016/j.electacta.2017.05.099
S. Wu, J. Liu, B. Cui, et al., Electrochim. Acta 299(2019) 231-244.
doi: 10.1016/j.electacta.2019.01.012
M. Sial, H. Lin, X. Wang, Nanoscale 10(2018) 12975-12980.
doi: 10.1039/C8NR03350A
H. Cheng, M.L. Li, C.Y. Su, N. Li, Z.Q. Liu, Adv. Funct. Mater. 27(2017) 1701833.
doi: 10.1002/adfm.201701833
X.T. Wang, T. Ouyang, L. Wang, J.H. Zhong, Z.Q. Liu, Angew. Chem. Int. Ed. 59(2020) 6492-6499.
doi: 10.1002/anie.202000690
X.T. Wang, T. Ouyang, L. Wang, et al., Angew. Chem. Int. Ed. 58(2019) 13291-13296.
doi: 10.1002/anie.201907595
H. Su, X.T. Wang, J. -X. Hu, et al., J. Mater. Chem. A: Mater. Energy Sustain. 7(2019) 22307-22313.
doi: 10.1039/C9TA08064C
X.X. Li, X.T. Wang, K. Xiao, et al., J. Power Sources 402(2018) 116-123.
doi: 10.1016/j.jpowsour.2018.09.021
X. Zou, J. Su, R. Silva, et al., Chem. Commun. (Camb. ) 49(2013) 7522-7524.
doi: 10.1039/c3cc42891e
J.A. Koza, Z. He, A.S. Miller, J.A. Switzer, Chem. Mater. 24(2012) 3567-3573.
doi: 10.1021/cm3012205
Y. Liang, Y. Li, H. Wang, et al., Nat. Mater. 10(2011) 780-786.
doi: 10.1038/nmat3087
Z. Chen, C.X. Kronawitter, B.E. Koel, Phys. Chem. Chem. Phys. 17(2015) 29387-29393.
doi: 10.1039/C5CP02876K
H. Jin, J. Wang, D. Su, et al., J. Am. Chem. Soc. 137(2015) 2688-2694.
doi: 10.1021/ja5127165
G. Cheng, T. Kou, J. Zhang, et al., Nano Energy 38(2017) 155-166.
doi: 10.1016/j.nanoen.2017.05.043
L. Xu, Q. Jiang, Z. Xiao, et al., Angew. Chem. Int. Ed. 55(2016) 5277-5281.
doi: 10.1002/anie.201600687
T. Zhang, M.Y. Wu, D.Y. Yan, et al., Nano Energy 43(2018) 103-109.
doi: 10.1016/j.nanoen.2017.11.015
D. Yan, R. Chen, Z. Xiao, S. Wang, Electrochim. Acta 303(2019) 316-322.
doi: 10.1016/j.electacta.2019.02.091
Y. Jin, H. Wang, J. Li, et al., Adv. Mater. 28(2016) 3785-3790.
doi: 10.1002/adma.201506314
Y. Zhao, C. Chang, F. Teng, et al., Adv. Energy Mater. 7(2017) 1700005.
doi: 10.1002/aenm.201700005
C. Dong, T. Kou, H. Gao, Z. Peng, Z. Zhang, Adv. Energy Mater. 8(2018) 1701347.
doi: 10.1002/aenm.201701347
S. Peng, F. Gong, L. Li, et al., J. Am. Chem. Soc. 140(2018) 13644-13653.
doi: 10.1021/jacs.8b05134
J. Li, Y. Wang, T. Zhou, et al., J. Am. Chem. Soc. 137(2015) 14305-14312.
doi: 10.1021/jacs.5b07756
W.F. Chen, C.H. Wang, K. Sasaki, et al., Energy Environ. Sci. 6(2013) 943-951.
doi: 10.1039/c2ee23891h
L. Liao, S. Wang, J. Xiao, et al., Energy Environ. Sci. 7(2014) 387-392.
doi: 10.1039/C3EE42441C
D.V. Esposito, S.T. Hunt, Y.C. Kimmel, J.G. Chen, J. Am. Chem. Soc. 134(2012) 3025-3033.
doi: 10.1021/ja208656v
K. Xiong, L. Li, L. Zhang, et al., J. Mater. Chem. A: Mater. Energy Sustain. 3(2015) 1863-1867.
doi: 10.1039/C4TA05686H
R. Ma, Y. Zhou, Y. Chen, et al., Angew. Chem. Int. Ed. 54(2015) 14723-14727.
doi: 10.1002/anie.201506727
H. Wang, C. Sun, Y. Cao, et al., Carbon 114(2017) 628-634.
doi: 10.1016/j.carbon.2016.12.081
H. Lin, Z. Shi, S. He, et al., Chem. Sci. 7(2016) 3399-3405.
doi: 10.1039/C6SC00077K
Y. Zhao, K. Kamiya, K. Hashimoto, S. Nakanishi, J. Am. Chem. Soc. 137(2014) 110-113.
doi: 10.1021/ja5114529
J.S. Li, Y. Wang, C.H. Liu, et al., Nat. Commun. 7(2016) 11204.
doi: 10.1038/ncomms11204
H.B. Wu, B.Y. Xia, L. Yu, X.Y. Yu, X.W. Lou, Nat. Commun. 6(2015) 6512.
doi: 10.1038/ncomms7512
H. Vrubel, X. Hu, Angew. Chem. Int. Ed. 51(2012) 12703-12706.
doi: 10.1002/anie.201207111
F.X. Ma, H.B. Wu, B.Y. Xia, C.Y. Xu, X.W. Lou, Angew. Chem. Int. Ed. 54(2015) 15395-15399.
doi: 10.1002/anie.201508715
J.T. Ren, L. Chen, C.C. Weng, G.G. Yuan, Z.Y. Yuan, ACS Appl. Mater. Interfaces 10(2018) 33276-33286.
doi: 10.1021/acsami.8b12108
Z. Kou, L. Zhang, Y. Ma, et al., Appl. Catal. B 243(2019) 678-685.
doi: 10.1016/j.apcatb.2018.11.008
H. Wang, Y. Cao, C. Sun, et al., ChemSusChem. 10(2017) 3540-3546.
doi: 10.1002/cssc.201701276
J.R. McKone, B.F. Sadtler, C.A. Werlang, N.S. Lewis, H.B. Gray, ACS Catal. 3(2013) 166-169.
doi: 10.1021/cs300691m
W.F. Chen, J.T. Muckerman, E. Fujita, Chem. Commun. (Camb. ) 49(2013) 8896-8909.
doi: 10.1039/c3cc44076a
Y. Yang, J. Liu, S. Guo, Y. Liu, Z. Kang, J. Mater. Chem. A: Mater. Energy Sustain. 3(2015) 18598-18604.
doi: 10.1039/C5TA04867B
M. Gong, W. Zhou, M.C. Tsai, et al., Nat. Commun. 5(2014) 4695.
doi: 10.1038/ncomms5695
R. Subbaraman, D. Tripkovic, K.C. Chang, et al., Nat. Mater. 11(2012) 550-557.
doi: 10.1038/nmat3313
Z.Y. Yu, Y. Duan, M.R. Gao, et al., Chem. Sci. 8(2017) 968-973.
doi: 10.1039/C6SC03356C
M. Li, Y. Zhu, H. Wang, et al., Adv. Energy Mater. 9(2019) 1803185.
doi: 10.1002/aenm.201803185
Y. Zhao, K. Kamiya, K. Hashimoto, S. Nakanishi, Angew. Chem. Int. Ed. 52(2013) 13638-13641.
doi: 10.1002/anie.201307527
W.F. Chen, J.M. Schneider, K. Sasaki, et al., ChemSusChem. 7(2014) 2414-2418.
doi: 10.1002/cssc.201402454
N. Han, K.R. Yang, Z. Lu, et al., Nat. Commun. 9(2018) 924.
doi: 10.1038/s41467-018-03429-z
Z.J. Chen, G.X. Cao, L.Y. Gan, et al., ACS Catal. 8(2018) 8866-8872.
doi: 10.1021/acscatal.8b02212
J. Zhang, Y. Liu, C. Sun, et al., ACS Energy Lett. 3(2018) 779-786.
doi: 10.1021/acsenergylett.8b00066
X. Xiong, C. You, Z. Liu, A.M. Asiri, X. Sun, ACS Sustainable Chem. Eng. 6(2018) 2883-2887.
doi: 10.1021/acssuschemeng.7b03752
N. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem. Int. Ed. 54(2015) 6251-6254.
doi: 10.1002/anie.201501616
T.H.M. Lau, X. Lu, J. Kulhavy, et al., Chem. Sci. 9(2018) 4769-4776.
doi: 10.1039/C8SC01114A
L. Xie, F. Qu, Z. Liu, et al., J. Mater. Chem. A: Mater. Energy Sustain. 5(2017) 7806-7810.
doi: 10.1039/C7TA02333B
J. Chen, B. Ren, H. Cui, C. Wang, Small 16(2020) 1907556.
doi: 10.1002/smll.201907556
S. Zhang, G. Gao, J. Hao, et al., ACS Appl. Mater. Interfaces 11(2019) 43261-43269.
doi: 10.1021/acsami.9b16390
P. Liu, J.A. Rodriguez, J. Am. Chem. Soc. 127(2005) 14871-14878.
doi: 10.1021/ja0540019
A.E. Henkes, Y. Vasquez, R.E. Schaak, J. Am. Chem. Soc. 129(2007) 1896-1897.
doi: 10.1021/ja068502l
E.J. Popczun, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Angew. Chem. Int. Ed. 53(2014) 5427-5430.
doi: 10.1002/anie.201402646
P. Liu, J.A. Rodriguez, T. Asakura, J. Gomes, K. Nakamura, J. Phys. Chem. B 109(2005) 4575-4583.
G. Zhang, G. Wang, Y. Liu, et al., J. Am. Chem. Soc. 138(2016) 14686-14693.
doi: 10.1021/jacs.6b08491
J. Kibsgaard, T.F. Jaramillo, Angew. Chem. Int. Ed. 53(2014) 14433-14437.
doi: 10.1002/anie.201408222
J. Kibsgaard, C. Tsai, K. Chan, et al., Energy Environ. Sci. 8(2015) 3022-3029.
doi: 10.1039/C5EE02179K
E.J. Popczun, J.R. McKone, C.G. Read, et al., J. Am. Chem. Soc. 135(2013) 9267-9270.
doi: 10.1021/ja403440e
Z. Huang, Z. Chen, Z. Chen, et al., Nano Energy 9(2014) 373-382.
doi: 10.1016/j.nanoen.2014.08.013
D.H. Ha, B. Han, M. Risch, et al., Nano Energy 29(2016) 37-45.
doi: 10.1016/j.nanoen.2016.04.034
Y.Y. Cai, X.H. Li, Y.N. Zhang, et al., Angew. Chem. Int. Ed. 52(2013) 11822-11825.
doi: 10.1002/anie.201304652
X.H. Li, M. Antonietti, Chem. Soc. Rev. 42(2013) 6593-6604.
doi: 10.1039/c3cs60067j
X.H. Li, Y.Y. Cai, L.H. Gong, et al., Chem. 20(2014) 16732-16737.
doi: 10.1002/chem.201404325
L.B. Lv, T.N. Ye, L.H. Gong, et al., Chem. Mater. 27(2015) 544-549.
doi: 10.1021/cm503988n
Z.H. Xue, H. Su, Q.Y. Yu, et al., Adv. Energy Mater. 7(2017)1602355.
doi: 10.1002/aenm.201602355
R. Wu, B. Xiao, Q. Gao, et al., Angew. Chem. Int. Ed. 57(2018) 15445-15449.
doi: 10.1002/anie.201808929
C. Huang, T. Ouyang, Y. Zou, N. Li, Z.Q. Liu, J. Mater. Chem. A: Mater. Energy Sustain. 6(2018) 7420-7427.
doi: 10.1039/C7TA11364A
Y. Li, H. Zhang, M. Jiang, et al., Adv. Funct. Mater. 27(2017) 1702513.
doi: 10.1002/adfm.201702513
Y. Wu, X. Tao, Y. Qing, et al., Adv. Mater. 31(2019) 1900178.
doi: 10.1002/adma.201900178
L.M. Cao, Y.W. Hu, S.F. Tang, et al., Adv. Sci. 5(2018) 1800949.
doi: 10.1002/advs.201800949
B. Zhang, Y.H. Lui, H. Ni, S. Hu, Nano Energy 38(2017) 553-560.
doi: 10.1016/j.nanoen.2017.06.032
L. Yan, B. Zhang, J. Zhu, et al., Appl. Catal. B 265(2020) 118555.
doi: 10.1016/j.apcatb.2019.118555
W. Zhu, X. Yue, W. Zhang, et al., Chem. Commun. (Camb. ) 52(2016) 1486-1489.
doi: 10.1039/C5CC08064A
C. Ouyang, X. Wang, C. Wang, et al., Electrochim. Acta 174(2015) 297-301.
doi: 10.1016/j.electacta.2015.05.186
B. Chen, R. Li, G. Ma, et al., Nanoscale 7(2015) 20674-20684.
doi: 10.1039/C5NR07429K
J.M. Falkowski, N.M. Concannon, B. Yan, Y. Surendranath, J. Am. Chem. Soc. 137(2015) 7978-7981.
doi: 10.1021/jacs.5b03426
R. Wu, J. Zhang, Y. Shi, D. Liu, B. Zhang, J. Am. Chem. Soc. 137(2015) 6983-6986.
doi: 10.1021/jacs.5b01330
K. Xu, P. Chen, X. Li, et al., J. Am. Chem. Soc. 137(2015) 4119-4125.
doi: 10.1021/ja5119495
N. Jiang, L. Bogoev, M. Popova, et al., J. Mater. Chem. A: Mater. Energy Sustain. 2(2014) 19407-19414.
doi: 10.1039/C4TA04339A
W. Zhou, X.J. Wu, X. Cao, et al., Energy Environ. Sci. 6(2013) 2921-2924.
doi: 10.1039/c3ee41572d
P. Chen, T. Zhou, M. Zhang, et al., Adv. Mater. 29(2017) 1701584.
doi: 10.1002/adma.201701584
Z. Quan, Y. Wang, J. Fang, Acc. Chem. Res. 46(2013) 191-202.
doi: 10.1021/ar200293n
G. Liu, H.G. Yang, J. Pan, et al., Chem. Rev. 114(2014) 9559-9612.
doi: 10.1021/cr400621z
L.L. Feng, G. Yu, Y. Wu, et al., J. Am. Chem. Soc. 137(2015) 14023-14026.
doi: 10.1021/jacs.5b08186
C. Tsai, F. Abild-Pedersen, J.K. Norskov, Nano Lett. 14(2014) 1381-1387.
doi: 10.1021/nl404444k
D. Voiry, R. Fullon, J. Yang, et al., Nat. Mater. 15(2016) 1003-1009.
doi: 10.1038/nmat4660
M.A. Lukowski, A.S. Daniel, F. Meng, et al., J. Am. Chem. Soc. 135(2013) 10274-10277.
doi: 10.1021/ja404523s
Q. Liu, X. Li, Q. He, et al., Small 11(2015) 5556-5564.
doi: 10.1002/smll.201501822
Q. Xiong, Y. Wang, P.F. Liu, et al., Adv. Mater. 30(2018) 1801450.
doi: 10.1002/adma.201801450
Y. Huang, Y. Sun, X. Zheng, et al., Nat. Commun. 10(2019) 982.
doi: 10.1038/s41467-019-08877-9
S. Huang, Y. Meng, S. He, et al., Adv. Funct. Mater. 27(2017) 1606585.
doi: 10.1002/adfm.201606585
S. Gupta, S. Zhao, X.X. Wang, et al., ACS Catal. 7(2017) 8386-8393.
doi: 10.1021/acscatal.7b02949
M. Kuang, Q. Wang, H. Ge, et al., ACS Energy Lett. 2(2017) 2498-2505.
doi: 10.1021/acsenergylett.7b00835
B. Zhang, X. Zheng, O. Voznyy, et al., Science 352(2016) 333-337.
doi: 10.1126/science.aaf1525
J. Zhang, L. Yu, Y. Chen, et al., Adv. Mater. 32(2020) 1906432.
doi: 10.1002/adma.201906432
J. Deng, Y. Su, D. Liu, et al., Chem. Rev. 119(2019) 9221-9259.
doi: 10.1021/acs.chemrev.9b00232
J. Wang, H. Cheng, S. Ren, et al., J. Mater. Chem. A: Mater. Energy Sustain. 8(2020) 16018-16023.
doi: 10.1039/D0TA03736B
H. Yang, J. Bright, S. Kasani, et al., Nano Res. 12(2018) 643-650.
B. Lv, J. Jiao, Y. Liu, et al., Nanoscale 11(2019) 22730-22733.
doi: 10.1039/C9NR08571H
A. Bergmann, T.E. Jones, E. Martinez Moreno, et al., Nat. Catal. 1(2018) 711-719.
doi: 10.1038/s41929-018-0141-2
J. Jiao, W. Yang, Y. Pan, et al., Small 16(2020) 2002124.
doi: 10.1002/smll.202002124
D.Y. Chung, J.W. Han, D.H. Lim, et al., Nanoscale 7(2015) 5157-5163.
doi: 10.1039/C4NR07648F
Y. Wu, G.D. Li, Y. Liu, et al., Adv. Funct. Mater. 26(2016) 4839-4847.
doi: 10.1002/adfm.201601315
S. Deng, Y. Zhong, Y. Zeng, et al., Adv. Sci. 5(2018) 1700772.
doi: 10.1002/advs.201700772
F. Yu, H. Zhou, Y. Huang, et al., Nat. Commun. 9(2018) 2551.
doi: 10.1038/s41467-018-04746-z
L. An, J. Feng, Y. Zhang, et al., Adv. Funct. Mater. 29(2019) 1805298.
doi: 10.1002/adfm.201805298
Y. Liu, S. Jiang, S. Li, et al., Appl. Catal. B 247(2019) 107-114.
doi: 10.1016/j.apcatb.2019.01.094
J. Zhang, T. Wang, D. Pohl, et al., Angew. Chem. Int. Ed. 55(2016) 6702-6707.
doi: 10.1002/anie.201602237
Y. Yang, K. Zhang, H. Lin, et al., ACS Catal. 7(2017) 2357-2366.
doi: 10.1021/acscatal.6b03192
Y. Guo, J. Tang, Z. Wang, et al., Nano Energy 47(2018) 494-502.
doi: 10.1016/j.nanoen.2018.03.012
Y. Yang, H. Yao, Z. Yu, et al., J. Am. Chem. Soc. 141(2019) 10417-10430.
doi: 10.1021/jacs.9b04492
Z. Kou, T. Wang, Q. Gu, et al., Adv. Energy Mater. 9(2019) 1803768.
doi: 10.1002/aenm.201803768
Q. Liang, H. Jin, Z. Wang, et al., Nano Energy 57(2019) 746-752.
doi: 10.1016/j.nanoen.2018.12.060
J. Lin, P. Wang, H. Wang, et al., Adv. Sci. 6(2019) 1900246.
doi: 10.1002/advs.201900246
L. Yang, R. Liu, L. Jiao, Adv. Funct. Mater. 30(2020) 1909618.
doi: 10.1002/adfm.201909618
C. Wu, B. Liu, J. Wang, et al., Appl. Surf. Sci. 441(2018) 1024-1033.
doi: 10.1016/j.apsusc.2018.02.076
X. Wang, W. Zhang, J. Zhang, Z. Wu, ChemElectroChem 6(2019) 4550-4559.
doi: 10.1002/celc.201901201
X. Luo, P. Ji, P. Wang, et al., Adv. Energy Mater. 10(2020) 1903891.
doi: 10.1002/aenm.201903891
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624