Citation: Ziyu Gan, Xiaolong Zhu, Qiuli Yan, Xiuyan Song, Daoshan Yang. Oxidative dual C–H sulfenylation: A strategy for the synthesis of bis (imidazo [1, 2-a]pyridin-3-yl)sulfanes under metal-free conditions using sulfur powder[J]. Chinese Chemical Letters, ;2021, 32(5): 1705-1708. doi: 10.1016/j.cclet.2020.12.046 shu

Oxidative dual C–H sulfenylation: A strategy for the synthesis of bis (imidazo [1, 2-a]pyridin-3-yl)sulfanes under metal-free conditions using sulfur powder

    * Corresponding author.
    E-mail address: yangdaoshan@tsinghua.org.cn (D. Yang).
  • Received Date: 21 October 2020
    Revised Date: 20 December 2020
    Accepted Date: 23 December 2020
    Available Online: 28 December 2020

Figures(6)

  • An efficient approach to sulfur-bridged imidazopyridines has been developed under metal-free conditions using inexpensive sulfur powder as the sulfur source. Most appealingly, the reaction can proceed smoothly without addition of any additives, ultimately decreasing the production of chemical waste. The inexpensive and green method should provide a useful strategy for constructing a library of novel and biological interesting heteroaromatic sulfides.
  • 加载中
    1. [1]

      (a) M.D. McReynolds, J.M. Dougherty, P.R. Hanson, Chem. Rev. 104 (2004) 2239-2258;
      (b) H. Liu, X.F. Jiang, Chem. Asian J. 8 (2013) 2546-2563.

    2. [2]

      C. Shen, P.F. Zhang, Q. Sun, et al., Chem. Soc. Rev. 44(2015) 291-314.  doi: 10.1039/C4CS00239C

    3. [3]

      (a) A. Ghaderi, Tetrahedron 72 (2016) 4758-4782;
      (b) X.M. Xu, D.M. Chen, Z.L. Wang, Chin. Chem. Lett. 31 (2020) 49-57;
      (c) L.L. Wang, M. Zhang, Y.L. Zhang, et al., Chin. Chem. Lett. 31 (2020) 67-70;
      (d) Y.Q. Jiang, J. Li, Z.W. Feng, et al., Adv. Synth. Catal. 362 (2020) 2609-2614;
      (e) Z. Wang, W.M. He, Chin. J. Org. Chem. 39 (2019) 3594-3595.

    4. [4]

      I.P. Beletskaya, V.P. Ananikov, Chem. Rev. 111(2011) 1596-1636.  doi: 10.1021/cr100347k

    5. [5]

      (a) Z. Gan, Q. Yan, G. Li, et al., Adv. Synth. Catal. 361 (2019) 4558-4567;
      (b) X. Wang, Q. Wang, Y. Xue, et al., Chem. Commun. 56 (2020) 4436-4439.

    6. [6]

      C. Ravi, S. Adimurthy, Chem. Rec. 17(2017) 1019-1038.  doi: 10.1002/tcr.201600146

    7. [7]

      (a) F.J. Chen, G. Liao, X. Li, J. Wu, B.F. Shi, Org. Lett. 16 (2014) 5644-5647;
      (b) C. Chen, L.L. Chu, F.L. Qing, J. Am. Chem. Soc. 134 (2012) 12454-12457.

    8. [8]

      T.B. Nguyen, Adv. Synth. Catal. 359(2017) 1066-1130.  doi: 10.1002/adsc.201601329

    9. [9]

      (a) L. Dyminska, Bioorg. Med. Chem. 23 (2015) 6087-6099;
      (b) A.J. Stasyuk, M. Banasiewicz, M.K. Cyranski, D.T. Gryko, J. Org. Chem. 77 (2012) 5552-5558;
      (c) H. Iida, R. Demizu, R. Ohkado, J. Org. Chem. 83 (2018) 12291-12296;
      (d) S. Ulloora, A.V. Adhikari, R. Shabaraya, Chin. Chem. Lett. 24 (2013) 853-856.

    10. [10]

      L.A. Sorbera, J. Castaner, P.A. Leeson, Drugs Future 27(2002) 935-941.  doi: 10.1358/dof.2002.027.10.701186

    11. [11]

      L. Almirante, L. Polo, A. Mugnaini, et al., J. Med. Chem. 8(1965) 305-312.  doi: 10.1021/jm00327a007

    12. [12]

      S.Z. Langer, S. Arbilla, J. Benavides, B. Scatton, Adv. Biochem. Psychopharmacol. 46(1990) 61.
       

    13. [13]

      C. Hamdouchi, J. de Blas, M. del Prado, et al., J. Med. Chem. 42(1999) 50-59.  doi: 10.1021/jm9810405

    14. [14]

      T. Guo, X.N. Wei, M. Zhang, et al., Chem. Commun. 56(2020) 5751-5754.  doi: 10.1039/D0CC00043D

    15. [15]

      Y. Kawai, S. Satoh, H. Yamazaki, N. Kayakiri, K. Yoshihara, T. Oku, Patent, WO-9634866-A1, 1995.

    16. [16]

      (a) J. Koubachi, S.E. Kazzouli, M. Bousmina, G. Guillaumet, Eur. J. Org. Chem. 24 (2014) 5119-5138;
      (b) Q. Cai, M.C. Liu, B.M. Mao, et al., Chin. Chem. Lett. 26 (2015) 881-884;
      (c) A.K. Bagdi, S. Santra, K. Monir, A. Hajra, Chem. Commun. 51 (2015) 1555-1575;
      (d) A.K. Bagdi, M. Rahman, S. Santra, A. Majee, A. Hajra, Adv. Synth. Catal. 355 (2013) 1741-1747;
      (e) X.Y. Li, Y. Liu, X.L. Chen, et al., Green Chem. 22 (2020) 4445-4449;
      (f) S. Santra, A.K. Bagdi, A. Majee, A. Hajra, Adv. Synth. Catal. 355 (2013) 1065-1070;
      (g) K. Groebke, L. Weber, F. Mehlin, Synlett 6 (1998) 661-663;
      (h) C. He, J. Hao, H. Xu, et al., Chem. Commun. 48 (2012) 11073-11075;
      (i) F. Gao, K. Sun, X.L. Chen, et al., J. Org. Chem. 85 (2020) 14744-14752;
      (j) G. Kibriya, A.K. Bagdi, A. Hajra, J. Org. Chem. 83 (2018) 10619-10626;
      (k) M. Singsardar, S. Mondal, S. Laru, A. Hajra, Org. Lett. 21 (2019) 5606-5610;
      (l) L.J. Ma, X.P. Wang, W. Yu, B. Han, Chem. Commun. 47 (2011) 11333-11335.

    17. [17]

      (a) H. Cao, S. Lei, N.Y. Li, et al., Chem. Commun. 51 (2015) 1823-1825;
      (b) G. Kibriya, S. Samanta, S. Jana, S. Mondal, A. Hajra, J. Org. Chem. 82 (2017) 13722-13727;
      (c) Y.J. Guo, S. Lu, L.L. Tian, et al., J. Org. Chem. 83 (2018) 338-349;
      (d) F. Shibahara, T. Kanai, E. Yamaguchi, et al., Chem. Asian J. 9 (2014) 237-244;
      (e) L.L. Tian, S. Lu, Z.H. Zhang, et al., J. Org. Chem. 84 (2019) 5213-5221;
      (f) S.M. Abdul Shakoor, D.S. Agarwal, S. Khullar, S.K. Mandal, R. Sakhuja, Chem. Asian J. 12 (2017) 3061-3068;
      (g) M. Yadav, S. Dara, V. Saikam, et al., Eur. J. Org. Chem. 29 (2015) 6526-6533;
      (h) S. Mondal, S. Samanta, S. Jana, A. Hajra, J. Org. Chem. 82 (2017) 4504-4510;
      (i) G.H. Xiao, H. Min, Z.L. Zheng, G.B. Deng, Y. Liang, Chin. Chem. Lett. 29 (2018) 1363-1366;
      (j) K. Sun, X. Wang, C. Li, H. Wang, L. Li, Org. Chem. Front. 7 (2020) 3100-3119.

    18. [18]

      M. Shiri, M.A. Zolfigol, H.G. Kruger, Z. Tanbakouchian, Chem. Rev. 110(2000) 2250-2293.  doi: 10.1016/B978-0-12-385464-3.00002-9

    19. [19]

      (a) G. Li, Z. Gan, K. Kong, X. Dou, D. Yang, Adv. Synth. Catal. 361 (2019) 1808-1814;
      (b) G. Li, Q. Yan, X. Gong, X. Dou, D. Yang, ACS Sustainable Chem. Eng. 7 (2019) 14009-14015;
      (c) G. Li, G. Zhang, X. Deng, et al., Org. Biomol. Chem. 16 (2018) 8015-8019;
      (d) X. Gong, G. Li, Z. Gan, et al., Asian J. Org. Chem. 8 (2019) 1472-1478;
      (e) G. Li, Q. Yan, Z. Gan, Q. Li, D. Yang, Org. Lett. 21 (2019) 7938-7942;
      (f) Z. Gan, G. Li, X. Yang, et al., Sci. China Chem. 63 (2020) 1652-1658.

    20. [20]

      Y.S. Zhu, Y.T. Xue, W.N. Liu, et al., J. Org. Chem. 85(2020) 9106-9116.  doi: 10.1021/acs.joc.0c01035

    21. [21]

      (a) T.B. Nguyen, L. Ermolenko, P. Retailleau, A. Al-Mourabit, Angew. Chem. Int. Ed. 53 (2014) 13808-13812;
      (b) H. Xie, J. Cai, Z. Wang, H. Huang, G.J. Deng, Org. Lett. 18 (2016) 2196-2199;
      (c) Y. Yang, W. Li, B. Ying, et al., ChemCatChem 8 (2016) 2916-2919.

  • 加载中
    1. [1]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Lei LiGuang YangTianbai XiongTingzhu DuanJia WangXin Wang . Metal-free click polymerization of thiols and chalcone-derived internal olefins in air to prepare functional clusteroluminescent polythioethers for dual-response fluorescent probe. Chinese Chemical Letters, 2025, 36(11): 111374-. doi: 10.1016/j.cclet.2025.111374

    4. [4]

      Yuanyuan ZhaoZhiming ZhuLiang LiBingyao ShiZiyang LiYuyang HuangLijun JiangChao Shu . Photoinduced site-selective thiosulfinylation of alkynols for the synthesis of oxathiolene oxides. Chinese Chemical Letters, 2025, 36(10): 110900-. doi: 10.1016/j.cclet.2025.110900

    5. [5]

      Hefei YangLe-Cheng WangXiao-Feng Wu . Sustainable carbonylative transformation of alkyl iodides to amides via crosslinking of EDA and XAT. Chinese Chemical Letters, 2025, 36(9): 110843-. doi: 10.1016/j.cclet.2025.110843

    6. [6]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    7. [7]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    8. [8]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    9. [9]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    10. [10]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    11. [11]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    12. [12]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    13. [13]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    14. [14]

      Lingdan KongPingping HuangFeng YuanYue ZhangXiaoqian ShiKang HanKeke LiuQing XuWenjing ZhangTom LawsonXiaoru XiaYong LiuYuepeng Jin . A metal-free bionic nanozyme for efficient inhibition of cancer recurrence and metastasis following photothermal therapy. Chinese Chemical Letters, 2025, 36(9): 111030-. doi: 10.1016/j.cclet.2025.111030

    15. [15]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    16. [16]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    17. [17]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    18. [18]

      Haoyu TianXiaolin CuiGuiwei YaoWenyan WeiJunchao LuSenyao ZhengXingjian WangXun ChenGuangkuan ZhaoDulin Kong . The sulfenylation of enamine esters with heterocyclic thiols or disulfides in water and application to DNA-compatible chemistry. Chinese Chemical Letters, 2025, 36(12): 111006-. doi: 10.1016/j.cclet.2025.111006

    19. [19]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    20. [20]

      Shengyi GongGuoqiang Feng . Visible light-triggered NIR ratiometric fluorescent metal-free CO-releasing molecule for self-monitoring of CO delivery and effective cancer therapy. Chinese Chemical Letters, 2025, 36(7): 110409-. doi: 10.1016/j.cclet.2024.110409

Metrics
  • PDF Downloads(20)
  • Abstract views(1672)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return